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Simultaneous Bayesian Sparse Approximation
With Structured Sparse Models
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Abstract—Sparse approximation is key to many signal process-
ing, image processing, and machine learning applications. If mul-
tiple signals maintain some degree of dependency, for example,
the support sets are statistically related, then it will generally be
advantageous to jointly estimate the sparse representation vectors
from the measurement vectors as opposed to solving for each sig-
nal individually. In this paper, we propose simultaneous sparse
Bayesian learning (SBL) for joint sparse approximation with two
structured sparse models (SSMs), where one is row-sparse with
embedded element-sparse and the other one is row-sparse plus
element-sparse. While SBL has attracted much attention as a
means to deal with a single sparse approximation problem, it is
not obvious how to extend SBL to SSMs. By capitalizing on a
dual-space view of existing convex methods for SMs, we showcase
the precision component model and covariance component model
for SSMs, where both models involve a common hyperparameter
and an innovation hyperparameter that together control the prior
variance for each coefficient. The statistical perspective of preci-
sion component versus covariance component models unfolds the
intrinsic mechanism in SSMs, and also leads to our development of
SBL-inspired cost functions for SSMs. Centralized algorithms that
include �1 and �2 reweighting algorithms and consensus-based
decentralized algorithms are developed for simultaneous sparse
approximation with SSMs. In addition, theoretical analysis is con-
ducted to provide valuable insights into the proposed approach,
which includes global minima analysis of the SBL-inspired non-
convex cost functions and convergence analysis of the proposed
�1 reweighting algorithms for SSMs. Superior performance of the
proposed algorithms is demonstrated by numerical experiments.

Index Terms—Sparse approximation, sparse Bayesian learning,
structured sparse model.

I. INTRODUCTION

S PARSE approximation, that solves linear inverse problems
with the principle of parsimony, is key to many signal

processing, image processing and machine learning applica-
tions [1]–[3]. For example, compressed sensing (CS) [4], [5],
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i.e., a new sampling paradigm, enables accurate reconstruction
of signals with a reduced number of measurements by exploit-
ing a sparse signal model. Another example is sparse subspace
clustering that has been used for motion segmentation and face
clustering in computer vision [6], [7]. Sparse subspace cluster-
ing exploits the sparsity assumption where signals coming from
the low dimensional subspace can be effectively represented
as a linear combination of other signals belonging to the same
low dimensional subspace, and hence requires solving ill-posed
inverse problems under the sparsity assumption.

In many cases, we need to estimate K sparse vectors xk ∈
Rm (k = 1, . . . , K) from their measurement vectors yk ∈ Rnk ,
which is normally formulated as the following optimization
problem:

min
X

K∑

k=1

‖Φkxk − yk‖2
2 + αf(X),

where Φk ∈ Rnk ×m is a sensing matrix that could be different
across signals, X = [x1 . . . xK ], f(·) is a regularization term to
promote sparsity and α > 0. If these measurement vectors and
associated coefficients maintain some degree of dependency,
for example the locations of zero-valued elements (or support
sets) are statistically related, then it will generally be advanta-
geous to jointly estimate the sparse representation vectors from
the measurements vectors as opposed to solving for each xk

individually.
Perhaps the simplest setting in multiple measurement vectors

(MMVs) is a row-sparse model where the sparse representation
vectors of all tasks share a common support, i.e., the set of in-
dices of the nonzero entries. The row-sparse model has been
used to improve the performance of CS to jointly reconstruct
multiple signals [8]. It has also been verified as an effective
remedy to improve the subspace clustering performance in [7].
Various approaches such as simultaneous orthogonal match-
ing pursuit [9], mixed norm minimization [10], an empirical
Bayesian strategy [11] and a hierarchical Bayessian model [12],
just to name a few, have been proposed to estimate the com-
mon support of the signals together with the amplitudes of the
coefficients for each signal.

However, the common support requirement is too ideal and
restrictive in many real world applications. For instance, the sup-
port of a time-varying sequence of images changes slowly over
time as shown in [13]. In this paper, we concentrate on less re-
strictive models with regard to the common support assumption,
which are called structured sparse models (SSMs), as illustrated
in Fig. 1 where each column corresponds to a sparse signal
representation vector. These SSMs have been exploited in a
large number of signal processing and machine learning tasks to
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Fig. 1. Various multitask sparse models. From the left to the right: (a) sparse,
(b) row-sparse, (c) SSM-1 (row-sparse with embedded element-sparse), and
(d) SSM-2 (row-sparse plus element-sparse).

jointly estimate multiple sparse vectors, e.g., object recognition
[14], functional magnetic resonance imaging (fMRI) analy-
sis [15], and dictionary learning [16], [17]. Convex methods
have been developed for simultaneous sparse approximation
with SSMs in [14], [15]. The type-2 SSM (SSM-2) is called a
dirty sparse model in [14], while the type-1 SSM (SSM-1) is
known as a simultaneously structured model. Interestingly, re-
cent work [18] shows that for simultaneously structured models,
using optimization with convex-relaxed norms can do no bet-
ter, orderwise, than exploiting only one of the structures, which
reveals a fundamental limitation imposed by using convex re-
laxation, and gives the motivation to develop nonconvex algo-
rithms for simultaneous sparse approximation with SSMs. Other
pre-defined multi-task structural assumptions can be found in
[19]–[21].

In addition to the emergence of complex models beyond the
element-sparse model and the row-sparse model, decentralized
processing has recently attracted increasing attention. It avoids
sharing private local data to outsiders, and thus is advanta-
geous compared to centralized processing in privacy-sensitive
applications. While most simultaneous sparse approximation al-
gorithms operate in a centralized manner, some decentralized
algorithms [22], [23] have been proposed for the case where all
signals share a common support. However, those decentralized
algorithms cannot be directly extended to SSMs and so benefit
from the interaction between the element-sparse model and the
row-sparse model.

In this paper, both centralized and decentralized Bayesian al-
gorithms for simultaneous sparse approximation with SSMs are
developed, where the cost functions of the optimization prob-
lems are nonconvex. While it is not obvious how to model SSMs
directly from a statistical perspective, by capitalizing on a dual-
space view of existing convex methods for SSMs, we show that
the convex penalties for SSM-1 and SSM-2 lead to a precision
component model and a covariance component model, respec-
tively, in sparse Bayesian learning (SBL), that deals with a single
sparse reconstruction problem from a Bayesian perspective [24],
[25]. The intrinsic precision component vs. covariance compo-
nent models in SSMs inspires our designs that extend SBL to
simultaneous sparse approximation with SSMs. With the re-
sultant cost functions corresponding to SSMs, a centralized �1
reweighting algorithm and a centralized �2 reweighting algo-
rithm are proposed for both models. Additionally, building on
the �2 reweighting algorithms, decentralized algorithms are de-
veloped for both to suit the needs of applications with privacy
concerns. In addition, theoretical analyses are conducted to shed

further light on the proposed approach, which includes global
minima analysis of the SBL-inspired nonconvex cost functions
and convergence analysis of the proposed �1 reweighting algo-
rithms for SSMs. Superior performance of the proposed algo-
rithms is demonstrated by numerical experiments.

The rest of the paper is organized as follows: Section II
describes the convex methods for simultaneous sparse approx-
imation with SSMs, and the SBL framework for single sparse
reconstruction. In Section III, we investigate convex penalties
promoting SSMs from a dual-space view, which provokes our
development of SBL-inspired cost functions for promoting
SSMs in simultaneous sparse approximation. In Section IV,
centralized �1 reweighting algorithms and centralized �2
reweighting algorithms are proposed for both models. In the
sequel, a consensus-based decentralized approach for SSMs
is proposed in Section V. Numerical results are presented in
Section VI, followed by experiments on face recognition in
Section VII. Conclusions are given in Section VIII.

The following notation is used. For a matrix X, the super-
scripts (X)T , (X)−1 , (X)† and |X| denote the transpose, the
inverse, the pseudoinverse and the determinant of X, respec-
tively. The �0 norm, the �1 norm, and the �2 norm of vectors,
are denoted by ‖ · ‖0 , ‖ · ‖1 , and ‖ · ‖2 , respectively. The trace
of a matrix is denoted by Tr(·). The column i and row i of the
matrix X are denoted by xi and xi,·, respectively. diag(X) de-
notes a vector with elements composed of the diagonal elements
of the matrix X. ‖X‖0,row denotes the �0,row norm that counts
the number of nonzero rows of X. For a set V , |V| denotes the
number of elements in V . I denotes an identity matrix. ∇xf(x)
denotes the differential of the function f(x).

II. BACKGROUND

A. Convex Methods for Simultaneous Sparse Approximation
With SSMs

For SSM-1, the matrix X that is composed of the sparse
representation vectors of different signals is row-sparse with
embedded element-sparse. Unlike the row-sparse model, SSM-1
does not force different signals to use exactly the same support.
This structure is favored in the following optimization problem:

min
X

K∑

k=1

‖Φkxk − yk‖2
2 + α1

K∑

k=1

‖xk‖0 + α2‖X‖0,row, (1)

where α1 > 0 and α2 > 0 are weights regarding element-
sparsity and row-sparsity, respectively. However, the �0 norm
and the �0,row norm in (1) lead to hard combinatorial prob-
lems. In [15], the convex �1 norm and the convex �1,2 norm
are used instead for simultaneous sparse approximation with
SSM-1, which leads to solving

min
X

K∑

k=1

‖Φkxk − yk‖2
2 + α1

K∑

k=1

‖xk‖1 + α2‖X‖1,2 ,

where the globally optimal solution can be obtained1.

1With appropriate definition of the contiguous nonzero patterns in fMRI ap-
plications, overlapping groups are further considered in [15] to encode structural
links between coefficients.
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On the other hand, SSM-2 has a structure that is row-sparse
plus element-sparse. In order to promote such a structure, a
method is proposed in [14] where X is viewed as the combina-
tion of a row-sparse matrix C ∈ Rm×K plus an element-sparse
matrix S ∈ Rm×K , and the following optimization problem is
posed:

min
C ,S

K∑

k=1

‖Φk (ck + sk ) − yk‖2
2 + β1

K∑

k=1

‖sk‖0 + β2‖C‖0,row,

(2)
where β1 > 0 and β2 > 0 are weights regarding element-
sparsity and row-sparsity, respectively. The nonconvex �0 norm
and the nonconvex �0,row norm make the problem in (2) NP-
hard. Again, with the use of convex approximation, the problem
in (2) is cast as a convex optimization problem2

min
C ,S

K∑

k=1

‖Φk (ck + sk ) − yk‖2
2 + β1

K∑

k=1

‖sk‖1 + β2‖C‖1,2 .

However, the convex regularizer used for sparsity approximation
is known to be too loose to approximate the �0-type regularizer
and so often achieves suboptimal performance.

B. SBL for Single Sparse Approximation

SBL considers the Gaussian likelihood model

p(yk |xk ) = N (yk ;Φkxk , νI)

and priors

p(xk ) = N (xk ;0,Γk ),

where ν denotes noise variance (which is assumed to be known,
although it can be learned), Γk is a diagonal matrix with
diag(Γk ) = γk , and γk is a vector of hyperparameters gov-
erning the prior variance of the elements in signal k. SBL has
a cost function favoring a sparse γk , which then leads to a
sparse xk .

From a Bayesian perspective, there are two different ways
to find the sparse representation vectors. The first is to apply
maximum a posterior (MAP) estimates of xk (referred to Type I
estimation), which gives

xk (I ) = arg min
xk ,γk �0

− log p(yk |xk )p(xk |Γk )

= arg min
xk ,γk �0

‖yk − Φkxk‖2
2 + νxT

k Γ−1
k xk .

With appropriate selection of a sparsity-driven hyper-prior,
Type I estimation also forms the solution in many algorithms
including the least absolute shrinkage and selection operator
(Lasso) [26], �p norm approaches [27], FOCUSS [28] and iter-
ative reweighted �1 methods [29].

Alternatively, instead of minimizing over both xk and γk as
in (3), Type II estimation treats xk as hidden variables, integrates

2As a convex approximation, the �0 , row norm is replaced by the �1 ,∞ norm
in [14].

them out, and conducts MAP estimation on γk as

γk (I I ) = arg max
γk

p(γk |yk )

= arg max
γk

∫
p(yk |xk )p(xk ;γk )dxk

= arg min
γk

yT
k Σ−1

k yk + log
∣∣Σk

∣∣,

(3)

where Σk = νI + ΦkΓkΦT
k . Given the likelihood and prior, the

posterior distribution p(xk |yk ;Σk ) is a Gaussian with mean

xk (I I ) = Γk (I I )Φ
T
k (νI + ΦkΓk (I I )Φ

T
k )−1yk . (4)

Type II estimation is also known as empirical Bayesian and
is used in algorithms such as SBL and the relevance vector
machine (RVM) [24].

The logarithm term log |Σk | in the cost function in (3) is a con-
cave function with respect to γk according to Lemma 1 of [25],
and thus it favors a sparse γk , which further leads to a sparse
solution via (4). The logarithm term in SBL is a non-separable
sparse penalty. By “non-separable”, it means that the sparse
penalty cannot be expressed as a summation over functions of
the individual coefficients. Owing to the use of a non-separable
sparse penalty, SBL is advantageous, in terms of reconstruction
accuracy, to many methods such as �p norm approaches [27]
and FOCUSS [28], which use separable sparse penalties [30].
We refer interested readers to [25], [31] for detailed analysis on
the advantages of SBL.

In view of the superiority of SBL in dealing with single sparse
approximation, it is desired to extend SBL to the case of SSMs.
However, SBL uses independent priors for multiple signals,
which fails to consider any inter-signal correlation, and thus is
unable to benefit from simultaneous sparse approximation. It is
not obvious how to proceed for either SSM-1 or SSM-2 with
the current SBL framework.

III. FROM SBL TO SIMULTANEOUS BAYESIAN SPARSE

APPROXIMATION WITH SSMS

A. A Dual-Space View Of Convex Penalties for SSMs

While Type I and Type II estimation may seem quite different,
comparisons of the two can be made by using a dual-space view
of the underlying cost functions [31], [32], i.e., expressing both
the Type I and Type II objective in terms of either xk or γk . The
dual-space view sheds light on the connections between the two
approaches, and helps in developing efficient update rules.

1) Precision Component Model For SSM-1: We note that the
element-sparse penalty ‖xk‖1 has a variational representation
as

‖xk‖1 = min
γ a

k j
≥0

1
2

∑

j

xk
2
j

γa
k j

+ γa
k j , (5)

while the row-sparse penalty ‖X‖1,2 can be viewed as

‖X‖1,2 = min
γ c

j ≥0

1
2

∑

j

∑
k xk

2
j

γc
j

+ γc
j , (6)
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where γa
k j and γc

j are scalars, γc is a vector that is common
to all signals, and γa

k is a vector that is uniquely associated
with signal k (k = 1, . . . ,K). Therefore, a convex optimization
problem, that favors SSM-1, can be given by

min
X

K∑

k=1

1
ν
‖yk − Φkxk‖2

2 + 2α‖xk‖1 + 2‖X‖1,2

= min
X , γc �0 ,
{γa

k
�0 }

K∑

k=1

(
1
ν
‖yk − Φkxk‖2

2 + αxT
k (Γa

k )−1xk

+ xT
k (Γc)−1xk + αTr(Γa

k )
)

+ Tr(Γc)

= min
X , γc �0 ,
{γa

k
�0 }

K∑

k=1

(
1
ν
‖yk − Φkxk‖2

2 + xT
k (Γa

k )−1xk

+ xT
k (Γc)−1xk + α2Tr(Γa

k )
)

+ Tr(Γc),

(7)

where α > 0, and Γc and Γa
k are diagonal matrices correspond-

ing to γc and γa
k , respectively.

With the definition of Σac
k = νI + Φk ((Γc)−1 + (Γa

k )−1)−1

ΦT
k and using the relationship

K∑

k=1

yT
k (Σac

k )−1yk

= min
X

K∑

k=1

1
ν
‖yk − Φkxk‖2

2 + xT
k (Γa

k )−1xk + xT
k (Γc)−1xk

as in [31], a different view of the existing convex cost function
(7) can be derived in γ-space, i.e.,

Lpre
(I )(γ

c , {γa
k}) =

K∑

k=1

yT
k (Σac

k )−1yk + α2Tr(Γa
k ) + Tr(Γc).

(8)

By comparing the data-related term yT
k (Σac

k )−1yk for SSM-1
and the data-related term in the cost function of SBL in (3), it is
observed that the common component γc and innovation com-
ponent γa

k interact with each other in the manner of a precision
component model, i.e.,

(Γk )−1 = (Γc)−1 + (Γa
k )−1 . (9)

Defining Γc
(I ) and {Γa

k (I )} as the solutions of minimizing
(8), and (Γk (I ))−1 = (Γc

(I ))−1 + (Γa
k (I ))

−1 according to the
precision component model in (9), then the solution obtained
from (7) satisfies

xk
pre = Γk (I )Φ

T
k (νI + ΦkΓk (I )Φ

T
k )−1yk . (10)

The precision component model in (9), where the support of the
vector γk is the intersection of γa

k and γc
k , leads to solutions

following SSM-1 via (10).
2) Covariance Component Model For SSM-2: According

to the variational representation of the convex element-sparse
penalty in (5) and the variational representation of the convex

row-sparse penalty in (6), the existing convex method for SSM-2
can be expressed as

min
X

K∑

k=1

1
ν
‖yk − Φk (ck + sk )‖2

2 + 2β‖sk‖1 + 2‖C‖1,2

= min
C , S , γc �0 ,

{γs
k
�0 }

K∑

k=1

(
1
ν
‖yk − Φk (ck + sk )‖2

2 + βsT
k (Γs

k )−1sk

+ cT
k (Γc)−1ck + βTr(Γs

k )
)

+ Tr(Γc)

= min
C , S , γc �0 ,

{γs
k
�0 }

K∑

k=1

(
1
ν
‖yk − Φk (ck + sk )‖2

2 + sT
k (Γs

k )−1sk

+ cT
k (Γc)−1ck + β2Tr(Γs

k )
)

+ Tr(Γc),

(11)

where β > 0, γs
k = diag(Γs

k ) is uniquely associated with signal
k (k = 1, . . . , K), and γc is common to all signals.

By defining Σsc
k = νI + Φk (Γc + Γs

k )−1ΦT
k and using the

relationship

K∑

k=1

yT
k (Σsc

k )−1yk = min
C ,S

K∑

k=1

1
ν
‖yk − Φk (ck + sk )‖2

2

+ sT
k (Γs

k )−1sk + cT
k (Γc)−1ck ,

(12)

we can express the existing convex cost function in γ-space as

Lcov
(I )(γ

c , {γs
k}) =

K∑

k=1

yT
k (Σsc

k )−1yk + β2Tr(Γs
k ) + Tr(Γc).

(13)

Comparing the data-related term yT
k (Σsc

k )−1yk in (13) and the
data-related term in the cost function of the SBL (3), we note
that the common component γc and innovation component γs

k

interact with each other in the manner of a covariance component
model, i.e.,

Γk = Γc + Γs
k . (14)

Assume Γc
(I ) and {Γs

k (I )} are the solutions of minimizing
(13), and Γk (I ) = Γc

(I ) + Γs
k (I ) . Then the solution obtained

from (11) satisfies

xk
cov = Γk (I )Φ

T
k (νI + ΦkΓk (I )Φ

T
k )−1yk . (15)

Although all the signals are linked via the common hyperpa-
rameters in γc , the interplay between the common component,
i.e., Γc , and innovation components, i.e., Γa

k or Γs
k , are different

in the precision component model and the covariance compo-
nent model. Specifically, the support of γk is the union of γa

k

and γc
k in the covariance component model, which promotes

SSM-2 via (15).
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B. SBL-Inspired Cost Functions for SSMs

Given the dual-space view of the convex penalties for SSMs,
a straightforward idea for extending SBL to SSMs is to consider
two different parameterizations, one via a precision component
model as in (9), and the other one via a covariance component
model as in (14). All the signals are linked via the common set
of hyperparameters in Γc . Then following the Bayesian mold
as in SBL, the cost functions of the precision component model
and the covariance component model have the form

K∑

k=1

log
∣∣Σac

k

∣∣ + yT
k (Σac

k )−1yk , (16)

and

K∑

k=1

log
∣∣Σsc

k

∣∣ + yT
k (Σsc

k )−1yk , (17)

respectively.
However, the common component Γc and the innovation

component, i.e., Γa
k in SSM-1 and Γs

k in SSM-2, are not iden-
tifiable in either (16) or (17). Specifically, one can always let
γc be a vector of all ones and adjust {Γa

k} accordingly without
changing the value of the objective in (16), or let γc be a vector
of all zeros and adjust {Γs

k} accordingly without changing the
value of the objective in (17).

With regular SBL it is not clear how to make simultaneous
Bayesian sparse approximation with SSMs. However, we can
replace the convex penalties in the existing models with the
SBL counterpoints to reap some of the corresponding benefits,
even though we deviate from any formal probabilistic model.
By doing so, we put forth the following cost function in the
γ-space for SSM-1

Lpre(γc , {γa
k}) =

K∑

k=1

α log
∣∣Σa

k

∣∣ + log
∣∣Σc

k

∣∣ + yT
k (Σac

k )−1yk ,

(18)

where Σa
k = ν

2 I + ΦkΓa
kΦ

T
k and Σc

k = ν
2 I + ΦkΓcΦT

k . With
the covariance component model, we pose the following cost
function in the γ-space for SSM-2

Lcov(γc , {γs
k})=

K∑

k=1

β log
∣∣Σs

k

∣∣ + log
∣∣Σc

k

∣∣ + yT
k (Σsc

k )−1yk ,

(19)

where Σs
k = ν

2 I + ΦkΓs
kΦ

T
k .

As the log-determinant function is a concave, non-decreasing
function, the term log |Σc

k | favors a sparse γc that is common to
all signals, and the term log |Σa

k | and log |Σs
k | promote sparse γa

k

and γs
k that are unique to each signal. The interaction between γc

and Σa
k , and the interaction between γc and Σs

k , are different in
the data related terms in (18) and (19), which promotes different
inter-signal structure. Given the estimated hyper-parameters,
the estimated sparse representation vectors can be calculated
as (4). The weights α and β are used to balance row sparsity
and element sparsity in the two cost functions. The value of α

and β can be tuned with training data or given by empirical
knowledge3.

C. Some Comments on the Cost Functions

We now provide the rationale why the cost functions, that re-
sult from hyperpriors that are distinct from those used in regular
SBL have the ability to find exactly the true sparse generating
vectors. Ideally, for a signal that has a sparse structure, it is
expected that the maximal sparse one should be the solution
that minimizes the sparse linear inverse problem (at least in
the noiseless case). In the following result, we show that the
global minima of the cost functions in (18) and (19) produce the
maximally sparse solutions.

Definition 1: The spark, spark[A], of a given matrix A is the
smallest number of columns of A that are linearly dependent.

Theorem 1: (Global Minima) For ∀k, let the maximally
sparse solution to yk = Φkxk be achieved at x̂k with ‖x̂k‖0
< nk , and spark[Φk ] = nk + 1. Let γ̂k denote hyper-
parameters such that x̂k = Γ̂1/2

k (Φk Γ̂
1/2
k )†yk , Then

� the global minima of the cost function limν→0
Lpre(γc , {γa

k}) is achieved at γc and {γa
k} such that(

(Γc)−1 + (Γa
k )−1

)−1 = Γ̂k , irrespective of the weight α;
� the global minima of the cost function limν→0

Lcov(γc , {γs
k}) is achieved at γc and {γs

k} such that
γc + γs

k = γ̂k , irrespective of the weight β.
The proof of this theorem is given in Appendix A. Here, the

condition on the spark can be satisfied almost surely by any
random matrix with nk ≤ m [34]. This result explains why the
proposed cost functions are able to find exactly the true sparse
generating vectors. We note that although the global minima
of the cost functions in (18) and (19) may be equivalent to the
global minima of independently solving a sparsity maximiza-
tion problem for each signal, the landscape of the entire cost
functions are not identical, as the inter-signal structure is con-
sidered in the two models via γc , which could be advantageous
in avoiding distracting local minima.

In addition, owing to the log-determinant terms, the proposed
simultaneous sparse approximation problems in (18) and (19)
have a non-separable sparse penalty. By “non-separable”, it
means that the sparse penalty cannot be expressed as a sum-
mation over functions of the individual coefficients. The advan-
tages of using a non-separable sparse penalty over a separable
sparse penalty are elaborated in detail in [30].

IV. ALGORITHMS FOR SIMULTANEOUS BAYESIAN SPARSE

APPROXIMATION WITH SSMS

Both the formulation (18) associated with the precision com-
ponent model and the formulation (19) associated with the co-
variance component model are nonconvex and difficult to solve.
In this section, we develop two different types of schemes, i.e.,

3Owing to the two optimization objectives, i.e., row-sparsity and element-
sparsity, in simultaneous sparse approximation with SSMs, the existing ap-
proaches [14], [15], [33] also turn the multiobjective optimization problem into
a scalar optimization problem with the use of an application-based weight to
balance the two objectives.
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�1 reweighting schemes and �2 reweighting schemes, to solve
the optimization problems. Both schemes are derived by using
majorization-minimization that repeatedly minimize and update
surrogate functions that majorize the original cost functions.

A. �1 Reweighting Schemes

Firstly, as the log-determinant term is a concave nondecreas-
ing function, we have the following upper bounds

log |Σa
k | = min

za
k

(za
k )T γa

k − h̄a
k (za

k ),

log |Σs
k | = min

zs
k

(zs
k )T γs

k − h̄s
k (zs

k ),

K∑

k=1

log |Σc
k | = min

zc
(zc)T γc − h̄c(zc),

where h̄a
k (za

k ) = minγa
k
(za

k )T γa
k − log |Σa

k |, h̄s
k (zs

k ) = minγs
k

(zs
k )T γs

k − log |Σs
k |, and h̄c(zc) = minγc (zc)T γc −

∑K
k=1

log |Σc
k | are the concave conjugate functions of log |Σa

k |,
log |Σs

k | and
∑K

k=1 log |Σc
k |, respectively. This leads to the fol-

lowing upper bounds for the original cost functions of SSM-1
in (18)

Lpre(γc , {γa
k}, zc , {za

k})

= zcγc − h̄c(zc)+
K∑

k=1

α(za
k )T γa

k − αh̄a
k (za

k ) + yT
k(Σac

k )−1yk

≥ Lpre(γc , {γa
k}).

(20)

For the cost functions of SSM-2 in (19), we have the following
upper bound

Lcov(γc , {γs
k}, zc , {zs

k})

= zcγc − h̄c(zc)+
K∑

k=1

β(zs
k )T γs

k − βh̄s
k (zs

k ) + yT
k(Σsc

k )−1yk

≥ Lcov(γc , {γs
k}).

The previous upper bounds are tight when

za
k = ∇γa

k
log |Σa

k | = diag
[
ΦT

k (Σa
k )−1 Φk

]
, (21)

zs
k = ∇γs

k
log |Σs

k | = diag
[
ΦT

k (Σs
k )−1 Φk

]
, (22)

zc = ∇γc

K∑

k=1

log |Σc
k | =

K∑

k=1

diag
[
ΦT

k (Σc
k )−1 Φk

]
. (23)

Given {za
k}, {zs

k} andzc , we obtain surrogate functions which
are upper bounds of the original cost functions. Specifically, in
order to update the hyper-parameters, one needs to solve the

following minimization problem

arg min
{γs

k },γc
Lpre

z (γc , {γs
k})

= arg min
{γs

k },γc
(zc)T γc +

K∑

k=1

α(za
k )T γa

k + yT
k (Σac

k )−1yk

(24)

for the precision component model, and the following mini-
mization problem

arg min
{γs

k },γc
Lcov

z (γc , {γs
k})

= arg min
{γs

k },γc
(zc)T γc +

K∑

k=1

β(zs
k )T γs

k + yT
k (Σsc

k )−1yk

(25)

for the covariance component model. The optimization prob-
lems in (24) and (25), can be proved to be convex problems using
Example 3.4 in [35]. Thus, many standard optimization proce-
dures can be applied. In the following, we show that (24) and
(25) can be minimized by solving weighted convex �1 + �1,2-
regularized problems.

Lemma 1: Let Za
k , Zs

k and Zc be diagonal matrices corre-
sponding to za

k , zs
k and zc , respectively. The objective function

(24) associated with the precision component model can be
minimized by solving

X = arg min
X

K∑

k=1

‖Φkxk − yk‖2
2 + 2α

1
2 ν

K∑

k=1

‖(Za
k )

1
2 xk‖1

+ 2ν‖(Zc)
1
2 X‖1,2 , (26)

and then setting γc
i = (zc

i)−1/2‖xi,·‖2 and γa
k i = (αza

k i)
−1/2

|xik |. The objective function (25) associated with the covariance
component model can be minimized by solving

{C,S} = arg min
C ,S

K∑

k=1

‖Φk (ck + sk ) − yk‖2
2

+ 2β
1
2 ν

K∑

k=1

‖(Zs
k )

1
2 sk‖1 + 2ν‖(Zc)

1
2 C‖1,2 ,

(27)

and then setting γc
i = (zc

i)−1/2‖ci,·‖2 and γs
k i = (βzs

k i)
−1/2

|sik |.
Given (26) and (27), we derive the �1 reweighting algorithms

with the precision component model and the covariance com-
ponent model for simultaneous sparse approximation, that are
described in Algorithm 1 and Algorithm 2, respectively. In
comparison to the algorithms proposed in [14], [15] that solve a
convex �1 + �1,2-regularized problem for promoting SSM-1 and
a convex �1 + �1,∞-regularized problem for promoting SSM-2,
respectively, our �1 reweighting algorithms are required to solve
a convex �1 + �1,2-regularized problem in each iteration. A more
significant difference is that the proposed algorithms operate in
the latent variable (hyper-parameter) space, which correspond to
Type II estimation, while the algorithms in [14], [15] are Type I
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Algorithm 1: The �1 reweighting algorithm with the preci-
sion component model.

Step 1: Initialize zc = 1 and za
k = 1, ∀k;

Step 2: Solve the optimization problem (26) to update γc

and γa
k , ∀k;

Step 3: Compute the optimal zc and za
k ∀k using

(23) and (21), respectively;
Step 4: Iterate steps 2 and 3 until convergence;
Step 5: Compute xk = (Γc−1 + Γa

k
−1)−1ΦT

k (Σac
k )−1yk .

Algorithm 2: The �1 reweighting algorithm with the covari-
ance component model.

Step 1: Initialize zc = 1 and zs
k = 1, ∀k;

Step 2: Solve the optimization problem (27) to update γc

and γs
k , ∀k;

Step 3: Compute the optimal zc and zs
k ∀k using (23) and

(22), respectively;
Step 4: Iterate steps 2 and 3 until convergence;
Step 5: Compute xk = (Γs

k + Γc
k )ΦT

k (Σsc
k )−1yk .

estimation, that are equivalent to applying MAP estimation us-
ing a sparsity-inducing prior from a Bayesian perspective.

The convergence analysis of the proposed �1 reweighting
algorithms with the precision component model and the covari-
ance component model is provided in the following Theorem,
which demonstrates that the proposed iterative algorithms are
guaranteed to converge to a stationary point from all initializa-
tion states. Proofs are given in Appendix C.

Theorem 2: Define θpre = ({γa
k},γc) and θcov =

({γs
k},γc). Let {θpre

t }∞t=0 and {θcov
t }∞t=0 be sequences of

iterates generated by the proposed algorithms for SSM-1
and SSM-2, respectively. Then {θpre

t }∞t=0 and {θcov
t }∞t=0 are

guaranteed to converge to stationary points of (18) and (19),
respectively.

B. �2 Reweighting Schemes

Now, we consider different surrogate functions that majorize
the original cost functions of the precision component model
and the covariance component model, which leads to the �2
reweighting schemes. First we consider the following bound

K∑

k=1

yT
k (Σac

k )−1yk ≤
K∑

k=1

1
ν
‖yk − Φkxk‖2

2 +
m∑

i=1

x2
ik

γc
i

+
x2

ik

γa
k i

,

(28)

for the precision component model, and for the covariance com-
ponent model we have

K∑

k=1

yT
k (Σsc

k )−1yk ≤
K∑

k=1

1
ν
‖yk − Φk (ck + sk )‖2

2

+
m∑

i=1

c2
ik

γc
i

+
s2

ik

γs
k i

.

(29)

The equality in (28) holds if

xk = (Γc−1 + Γa
k
−1)−1ΦT

k (Σac
k )−1yk (30)

for each signal, while equality in (29) holds if

sk = Γs
kΦ

T
k (Σsc

k )−1yk (31)

and

ck = ΓcΦT
k (Σsc

k )−1yk (32)

for each signal.
Then we consider upper bounds for the log-determinant terms

of the cost functions. As the log-determinant terms are concave
nondecreasing functions, we define the concave conjugate func-
tions

ḡa
k (za

k ) = min
γa

k

m∑

i=1

za
k i

γa
k i

− log
∣∣∣∣Γ

a
k
−1 +

2
ν
ΦT

k Φk

∣∣∣∣ ,

ḡs
k (zs

k ) = min
γs

k

m∑

i=1

zs
k i

γs
k i

− log
∣∣∣∣Γ

s
k
−1 +

2
ν
ΦT

k Φk

∣∣∣∣ ,

ḡc(zc) = min
γc

m∑

i=1

zc
i

γc
i

−
K∑

k=1

log
∣∣∣∣Γ

c−1 +
2
ν
ΦT

k Φk

∣∣∣∣ .

According to the duality relationship of concave conjugate func-
tions, we have the following upper bounds:

log
∣∣∣∣Γ

a
k
−1 +

2
ν
ΦT

k Φk

∣∣∣∣ = min
za

k

m∑

i=1

za
k i

γa
k i

− ḡa
k (za

k ), (33)

log
∣∣∣∣Γ

s
k
−1 +

2
ν
ΦT

k Φk

∣∣∣∣ = min
zs

k

m∑

i=1

zs
k i

γs
k i

− ḡs
k (zs

k ), (34)

K∑

k=1

log
∣∣∣∣Γ

c−1 +
2
ν
ΦT

k Φk

∣∣∣∣ = min
zc

m∑

i=1

zc
i

γc
i

− ḡc(zc), (35)

where the bounds are tight when

za
k = diag

[(
Γa

k
−1 +

2
ν
ΦT

k Φk

)−1
]

, (36)

zs
k = diag

[(
Γs

k
−1 +

2
ν
ΦT

k Φk

)−1
]

, (37)

zc =
K∑

k=1

diag

[(
Γc−1 +

2
ν
ΦT

k Φk

)−1
]

. (38)

Inserting the upper bounds, (28), (33) and (35), into the cost
function (18) and omitting irrelevant terms, we arrive at the
following approximation

min
γc ,{γa

k }

m∑

i=1

x2
ik

γc
i

+
x2

ik

γa
k i

+
αza

k i

γa
k i

+
zc

i

γc
i

+ K log |Γc | + α

K∑

k=1

log |Γa
k | ,
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and its solutions are

γa
k i = za

k i +
x2

ik

α
(39)

and

γc
i =

zc
i +

∑
k x2

ik

K
. (40)

Inserting the upper bounds, (29), (34) and (35), into the cost
function (19), we have

min
γc ,{γs

k }

m∑

i=1

c2
ik

γc
i

+
s2

ik

γs
k i

+
βzs

k i

γs
k i

+
zc

i

γc
i

+ K log |Γc | + β
K∑

k=1

log |Γs
k | ,

where the solutions are

γs
k i = zs

k i +
s2

ik

β
(41)

and

γc
i =

zc
i +

∑
k c2

ik

K
. (42)

Therefore, by repeatedly minimizing and updating the ma-
jorization functions, we obtain the �2 reweighting algorithms for
SSM-1 and SSM-2, that are described in Algorithm 3 and Algo-
rithm 4, respectively. Although each iteration of the proposed �2
reweighting algorithms is guaranteed to reduce or leave the cost
function (18) and (19) unchanged, it is insufficient to guarantee
formal convergence to a stationary point. The convergence anal-
ysis for the proposed �2 reweighting algorithms is very difficult,
as it requires, for example, that the additional conditions of the
Zangwill’s Global Convergence Theorem hold [36]. However
in practice, we have not encountered any convergence issues. In
addition, it should be noted that the �1 reweighting algorithms
developed in the previous subsection, which although have prov-
able convergence, need to iteratively solve �1 + �1,2-regularized
optimization problems in each iteration that do not have close
form solutions, while the proposed �2 reweighting algorithms
has a closed form solution to be computed in every step.

V. DECENTRALIZED ALGORITHMS FOR SIMULTANEOUS SPARSE

APPROXIMATION WITH SSMS

In this section, we develop decentralized algorithms for simul-
taneous sparse approximation with SSMs. A significant advan-
tage of the proposed decentralized algorithms is that the learning
process is carried out in a decentralized way without sharing the
original data sets of different signals, and thus it is applicable
for privacy-sensitive applications. The proposed schemes are de-
rived from the �2 reweighting algorithms described previously
by casting the update steps as a set of decentralized problems
with consensus constraints.

For a decentralized scenario, we consider a network with
T̃ nodes modeled by a undirectional graph G = (V, E), where
V = {1, . . . , T̃} is the set of nodes and E ⊂ V × V is the set of
edges that describe the communication links among the nodes.

Algorithm 3: The �2 reweighting algorithm with the preci-
sion component model.

Step 1: Initialize γc = 1 and γa
k = 1, ∀k;

Step 2: Compute the optimal xk ∀k using (30);
Step 3: Compute the optimal zc and za

k ∀k using (38) and
(36), respectively;

Step 4: Compute γc and γa
k ∀k using (40) and (39),

respectively;
Step 5: Iterate steps 2, 3 and 4 until convergence.

Algorithm 4: The �2 reweighting algorithm with the covari-
ance component model.

Step 1: Initialize γc = 1 and γs
k = 1, ∀k;

Step 2: Compute the optimal sk and ck ∀k using (31) and
(32), respectively;

Step 3: Compute the optimal zc and zs
k ∀k using (38) and

(37), respectively;
Step 4: Compute γc and γs

k ∀k using (42) and (41),
respectively;

Step 5: Iterate steps 2, 3 and 4 until convergence.

Each node is able to process locally stored data and exchange
messages with its neighbors. We assume there are Kt observa-
tion vectors and Kt sensing matrices stored at node t (t ∈ V),
which are denoted by ykt

∈ Rnk t and Φkt
∈ Rnk t ×m , respec-

tively, where kt ∈ Wt , Wt denotes the task index set for node
t, |Wt | = Kt and Wt ′ ∩ Wt ′′ = ∅ if t′ �= t′′. For all nodes, there

are
∑T̃

t=1 Kt = K signals in total. The goal is to recover the
unknown sparse vectors xkt

∈ Rm for all nodes. Owning to the
correlation between the data sets of different nodes, which is
modeled via SSMs in this paper, simultaneous sparse approx-
imation is expected to provide improved performance in com-
parison to signal reconstruction independently at each node.

Now let us revisit the proposed centralized �2 reweighting
algorithms. Given the common parameters zc and γc , nodes
can work in parallel to execute (30), (31), (32), (36), (37), (39)
and (41). Now, instead of computing zc from (38) that requires
inter-node communication to exchange information, each node
computes

zc
k = diag

[(
Γc−1 +

2
ν
ΦT

k Φk

)−1
]

locally, where
∑K

k=1 zc
k = zc according to (38). With this revi-

sion, the update rules of the common hyper-parameter γc can
be expressed as

γc =
1
K

∑

k

qk , (43)

where qk i = zc
k i + x2

ik in the precision component model ac-
cording to (40), and qk i = zc

k i + c2
ik in the covariance com-

ponent model according to (42). Therefore, we only need to
decentralize the computation of the common parameters γc in
each iteration of the proposed �2 reweighting algorithms.
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According to the expression in (43), γc is updated as the
average of qk (k = 1, . . . ,K), which can be obtained by solving
the following average consensus problem

min
γc

T̃∑

t=1

∑

k∈Wt

‖γc − qk‖2
2 . (44)

This optimization problem can be further reformulated into

min
(γc ) 1 , . . . ,

(γc ) T̃

T̃∑

t=1

∑

k∈Wt

∥∥(γc)t − qk

∥∥2
2

s.t. (γc)t = (γc)jt , ∀jt ∈ Nt , ∀t ∈ {1, . . . , T̃}, (45)

where (γc)t denotes the local estimate of γc = 1
K

∑K
k=1 qk at

node t, and Nt denotes the neighbors of node t. Two nodes
are called neighbors if they can communicate with each other
to exchange information. Optimization problems (44) and (45)
are equivalent if their neighborhood relationship can lead to a
connected graph.

We employ the alternating direction method of multipliers
(ADMM) [37] to solve (45) in a decentralized manner. Accord-
ing to [38], the simplified ADMM form of (45) consists of the
following iterations

pt,new
z = pt,old

z + ρ
∑

jk ∈Nt

(
(γc)t,old − (γc)jt ,old

)
,

(γc)t,new =
1

2Kt + 2ρ|Nt |

(
2

∑

k∈Wt

qk

− pt,new
z + ρ

∑

jk ∈Nk

(
(γc)t,old + (γc)jt ,old

) )
(46)

for ∀t ∈ {1, . . . , T̃}, where ρ > 0 is a preselected penalty co-
efficient. Note that nodes can execute (46) in parallel with the
information concerning (γc)jt passed from their neighbors. In
addition, it has been proved that iteratively executing the steps in
(46) will converge to the global solution γc for any ρ > 0 [38].

VI. NUMERICAL EXPERIMENTS

In this section we present numerical experiment results to
compare the recovery performance of various algorithms for
simultaneous sparse approximation with SSMs. The following
algorithms are considered in our comparison:

� Least absolute shrinkage and selection operator (Lasso):
solving a convex optimization problem with an �1 regular-
izer to promote element-sparse solutions;

� �1,2 : solving a convex optimization problem with an �1,2
regularizer to promote row-sparsity;

� �1/�1,2 : solving a convex optimization problem with an �1
regularizer and an �1,2 regularizer to promote SSM-1 [15];

� �1 + �1,∞: solving a convex optimization problem with
an �1,2 regularizer and an �1,∞ regularizer to promote
SSM-2 [14];

� SBL: a nonconvex Bayesian learning algorithm for sparsity
minimization [25];

� MSBL: a nonconvex Bayesian learning algorithm for row-
sparsity minimization [11];

� Proposed algorithms based on the precision model for
SSM-1;

� Proposed algorithms based on the covariance model for
SSM-2.

In the experiments, we consider random CS measurement
vectors yk = Φxk + ek (k = 1, . . . ,K), where ek is a zero-
mean Gaussian noise vector with variance adjusted to have a
desired value of the signal to noise ratio (SNR). We use the same
sensing matrix Φ for all signals, where the entries of the sens-
ing matrix are generated independently from N (0, 1) and then
normalized for each column. The sparse signal representations
X are generated following SSM-1 or SSM-2. Specifically, for
SSM-1, we randomly select d nonzero rows for the sparse signal
representation matrix X with all the nonzero entries drawn in-
dependently from N (0, 1). Then r nonzeros of each column are
randomly chosen and forced to be zeros. On the other hand, for
SSM-2, we generate an element-sparse matrix S with r nonzero
elements for each signal drawn independently from N (0, 1) and
a random row-sparse matrix C with d − r nonzero rows with
entries drawn independently from N (0, 1). Then the source
matrix is obtained by X = C + S. The recovery performance

is evaluated via relative recovery error defined by ‖X̂−X‖F

‖X‖F
, and

averaged over 100 trials.
If we do not point out specifically in the experiments, the

baseline settings in the simulation are given as: the number of
measurements n = 35, the ambient dimension m = 100, the
number of signals K = 5, an SNR of 20 dB, the row sparsity
d = 10, the number of innovation zeros of xk in SSM-1 is
r = 3, and the innovation nonzeros of sk in SSM-2 is r = 3.
We set α = 1 for the proposed algorithms with the precision
component model, and β = 2 for the proposed algorithms with
the covariance component model. The noise variance ν is given
and fixed in all the algorithms, although some learning rules can
be used to estimate ν [24], [25]. To evaluate the performance of
the proposed decentralized algorithms, we consider a network
generated as a �K

2 �-connected Harary graph with K nodes,
where each node is only available to communicate with �K

2 �
adjacent neighbors to exchange information. The parameter ρ
of the ADMM step is set to 0.3 in our simulations.

A. Convergence Performance

Firstly, we study the convergence performance of the pro-
posed algorithms, and investigate the possibility to reduce the
communication burden of the proposed algorithms by using
inexact consensus ADMM, i.e., all the nodes have the same
copy of information in the end. Firstly, Fig. 2(a) shows the
convergence rate of the inner consensus loop of the proposed
decentralized algorithms, where about 10 rounds of message
exchanges are required to achieve convergence in our settings.
As shown in Fig. 2(b), we note that exact consensus is not nec-
essary for the proposed decentralized algorithm for SSM-1, and
inexact consensus with a single message exchange per iteration,
does not degrade the reconstruction performance. Interestingly,
the convergence rate of the proposed decentralized algorithm
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Fig. 2. Convergence rates of the proposed algorithms for a single instance.

with the precision component model converges more quickly
using inexact consensus than exact consensus in our settings.
This phenomenon has been observed in different instances of
our simulations although we only show a single instance here.
For SSM-2, as shown in Fig. 2(c), inexact consensus with a
single message exchange per iteration is insufficient and de-
grades the reconstruction accuracy of the proposed algorithm,
and more transmissions are required to provide accuracy results
(even though exact consensus is still not required). The dis-
tinctive convergence characteristics of the proposed algorithms
in the two SSMs is caused by the different mechanisms in the
component models. Specifically, γa

k encapsulates all the sup-
port information of signal k for the precision component model,
but for the covariance component model, γs

k encapsulates only
a part of the support information of signal k and so accurate
consensus for γc is important.

B. Recovery Performance With Different Number of Signals

In this experiment we investigate how the proposed algo-
rithms benefit from simultaneous sparse approximation with

Fig. 3. Comparison of the reconstruction accuracy with different number of
tasks.

SSMs for different numbers of signals. As shown in Fig. 3(a), for
SSM-1, algorithms including �1,2 , �1/�1,2 , MSBL and the pro-
posed algorithms with the precision model, that exploit simulta-
neous sparse approximation, all have improved reconstruction
accuracy in comparison to that of the signal-independent re-
construction algorithms, i.e., Lasso and SBL. In addition, �1,2
and MSBL exploit a general row-sparse model without con-
sidering the sparse structure in each nonsparse row, and thus
have degraded performance in comparison to the related �1/�1,2
and the proposed algorithms. On the other hand, for SSM-2,
as shown in Fig. 3(b), the reconstruction accuracy of �1,2 and
MSBL tend to be worse with a growing number of signals ow-
ing to the limitation of using the row-sparse model to capture
SSM-2, while �1 + �1,∞ and the proposed algorithms with the
covariance component model are able to benefit from simul-
taneous sparse approximation. For both SSMs, our proposed
algorithms outperform all the others, and proposed �2 reweight-
ing algorithms have performance close to the �1 reweighting
algorithms. The decentralized algorithms with inexact consen-
sus also achieve superior performance in comparison to other
competitors for both SSMs. Here, we consider a single message
exchange and five message exchanges per iteration for the pre-
cision component model and the covariance component model,
respectively, as accurate consensus is more important to the
covariance component model, as depicted by Fig. 2.

C. Recovery Performance With Different Innovation Levels

In this experiment we study how the algorithms perform with
different innovation levels in each SSM. For SSM-1, we vary
the number of innovation zeros in the row-sparse X, and vary
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Fig. 4. Comparison of reconstruction accuracy with different innovation
levels.

the number of nonzeros in each column of S in SSM-2. It is
observed in Fig. 4(a) for SSM-1 that the reconstruction error
of all the algorithms tend to decrease with a growing number
of innovation zeros, and that the proposed algorithms achieve
the best recovery performance. The performance comparison
of various algorithms for SSM-2 is shown in Fig. 4(b). Here,
since C is generated as a d − r row-sparse matrix in SSM-2,
the sparsity of each sparse representation vector xk is a fixed
value d = 10 even as the sparsity of sk varies. However, with
a growing number of nonzeros in each column of S, the sparse
representation matrix X has more nonzero rows, which leads
to a significant performance degradation of �1,2 and MSBL
as shown in Fig. 4(b). For SSM-2, the proposed algorithms
perform as well as MSBL when r = 0, which means the sparse
representation matrix X is exactly row-sparse, and performs as
well as SBL when r becomes large, which means X becomes
element-sparse. This observation indicates that our proposed
algorithms bridge the gap between the element-sparse model
and the row-sparse model, and are very advantageous in the
case when the sparse representation vectors in simultaneous
sparse approximation have a “dirty”-sparse structure.

D. Recovery Performance With Different Levels of Noise and
Different Numbers of Measurements

In the previous experiments, we have shown that the pro-
posed algorithms significantly outperform all the algorithms
chosen for comparison in a moderate SNR of 20 dB and for a
fixed number of measurements n = 35. Now in Fig. 5, we pro-
vide experimental results to show how the proposed algorithms

Fig. 5. Comparison of reconstruction accuracy with different levels of noise.

Fig. 6. Comparison of reconstruction accuracy with different number of
measurements.

perform in different noise levels and in Fig. 6 for different num-
bers of measurements. Again, it is observed the the proposed
algorithms have the highest reconstruction accuracy among all
the algorithms for both SSMs. Both the proposed �2 reweight-
ing algorithms and the �1 reweighting algorithms have similar
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TABLE I
COMPARISON OF COMPUTING TIME

TABLE II
FACE RECOGNITION ERROR

reconstruction accuracy performance. In all the experiments,
decentralizing the �2 reweighting algorithms through carrying
out inexact consensus does not degrade performance at high
SNR, while performance degrades only slightly at low SNR in
Fig. 5.

E. Comparison of Computing Time

We now evaluate the computing time of the proposed meth-
ods. Our simulations are performed in a MATLAB R2012b
environment on a system with a quad-core 3.4 GHz CPU and
32 GB RAM, running under the Microsoft Windows 7 operating
system. As shown in Table I, both the proposed �2 reweighting
algorithms and the �1 reweighting algorithms take more comput-
ing time as the number of tasks increases, and that the proposed
�2 reweighting algorithms take less computing time than the
�1 reweighting algorithms for both SSMs. In comparison to the
�1/�1,2 method and the �1 + �1,∞ method that target SSM-1 and
SSM-2, respectively, the proposed �2 reweighting algorithms re-
duce the computing time by 75% and 99% in the case of 20 tasks
for SSM-1 and SSM-2, respectively.

VII. EXPERIMENTS: USING SSMS FOR FACE RECOGNITION

We now illustrate the benefit of using SSMs for face
recognition. Here, we use the AR database that contains more
than 4000 images of 126 people. There are 26 facial images for
each subject, which involve different illumination scenarios,
different expressions and different facial ’disguise’ (sunglasses
and scarves). The size of each image is 154 × 120 pixels.
Following the standard evaluation procedure, we use a subset
of the database consisting of 2600 images from 50 male and
female subjects respectively. For each subject, we randomly
select 20 facial images for training and the other 6 for testing. In
the following experiment, each facial image is projected onto a

540 dimension feature vector with a randomly generated matrix
from a zero-mean normal distribution. We consider the standard
dictionary learning approaches including the sparse
representation-based classification (SRC) [39] and the in-
coherent class-specific dictionary (ICSD) [40], that are widely
used for face recognition, to learn a dictionaries with 500 atoms.
We also use the class-specific residue for face recognition as
in [39]. The regularisation parameters, i.e., ν, α and β, are
determined by cross validation on the training dataset. The
value used in this experiment are (ν = 10−3 , α = 0.1) for the
precision component model, and (ν = 10−3 , β = 10) for the
covariance component model.

While the sparse coding step in LASSO is conducted in par-
allel for different testing images, our proposed approaches and
the �1,2 norm minimization approach consider the images of the
same subject as a group for the testing phase. The prior knowl-
edge of grouping information is available in some scenarios,
e.g., a sequence of facial images of the same subject is extracted
from a video for face recognition. For classification using the
SSM-2, we only use those representation supports shared across
tasks in order to remove the innovations in various images of
the same subject. The experimental results are summarized in
Table II. We implement four convex formulations, i.e., LASSO,
�1,2 norm minimization, and �1 + �1,∞ norm minimization and
�1/�1,2 norm minimization. However, �1 + �1,∞ does not have
better performance than the other three convex methods. Our
approaches outperform Lasso and the �1,2 norm minimization
approach by at least 1.5 and 1 percentage points in terms of
recognition error, respectively.

VIII. CONCLUSION

While SBL is successful for single sparse approximation
problems, how to extend it to estimate multiple sparse approxi-
mations that follow SSMs is not obvious. The dual-space view
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of the convex methods for SSMs allow us to understand x-space
dirty structures from the perspective of γ-space approaches,
which unfolds the intrinsic precision component vs. covariance
component models in simultaneous sparse approximation with
SSMs. Superior performance of the proposed approaches in-
cluding centralized methods and decentralized methods, have
been demonstrated by simulation results. We envisage that the
fundamental mechanism in the precision component vs. covari-
ance component models could be suitable for a broad range of
data models involving either simultaneous structures or addi-
tive/dirty structures, although doing so is out of the scope this
paper.

APPENDIX A
PROOF OF THE THEOREM 1

The following proofs are based on the results of Theorem 4
in [31], which considers a single sparse approximation prob-
lem with SBL. However, for simultaneous sparse approximation
with SSMs, some modifications are required.

According to the formulations of the cost functions in (18)
and (19), the minimum occurs when

∃k,
∣∣∣
ν

2
I + ΦkΓa

kΦ
T
k

∣∣∣ = 0 or
∣∣∣
ν

2
I + ΦkΓcΦT

k

∣∣∣ = 0,

K∑

k=1

yT
k (νI + ΦkΓkΦT

k )−1yk ≤ ρ1 ,

for SSM-1, and for SSM-2

∃k,
∣∣∣
ν

2
I + ΦkΓs

kΦ
T
k

∣∣∣ = 0 or
∣∣∣
ν

2
I + ΦkΓcΦT

k

∣∣∣ = 0,

K∑

k=1

yT
k (νI + ΦkΓkΦT

k )−1yk ≤ ρ2 ,

where ρ1 > 0 and ρ2 > 0 denote some finite bounds. Now, all
that is required is to prove that the solutions, which lead to
accurate reconstruction, satisfy these conditions.

According to (4), the support of x̂k is the same as the support
associated with γ̂k when ν = 0. For the precision component
model in (9), we let γ̂c be a vector with all elements being a
unit value, then (Γ̂

a

k )−1 = (Γ̂k )−1 − (Γ̂
c
)−1 , which suggests

that the support of x̂k is the same as the support of γ̂a
k . Since

‖x̂k‖0 < nk , we have
∣∣ΦkΓa

kΦ
T
k

∣∣ = 0. For the covariance com-
ponent model in (14), it is known that the support of x̂k is the
union of the support of γ̂a

k and the support of γ̂c . Therefore,
both

∣∣ΦkΓcΦT
k

∣∣ and
∣∣ΦkΓs

kΦ
T
k

∣∣ are equal to zero.
In addition, we have

lim
ν→0

yT
k (νI + Φk Γ̂kΦT

k )−1yk

= lim
ν→0

x̂T
k Γ̂

−1/2
k Γ̂

1/2
k ΦT (νI + Φk Γ̂kΦT

k )−1ΦΓ̂
1/2
k Γ̂

−1/2
k x̂k

= x̂T
k Γ̂

−1
k ẑk ≤ 1

δk
‖x̂k‖2

2 ,

where δk > 0 is the minimum nonzero entry of Γ̂k . Now we
complete the proof.

APPENDIX B
PROOF FOR LEMMA 1

First we consider the following bound

K∑

k=1

yT
k (Σac

k )−1yk

= arg min
X

K∑

k=1

1
ν
‖yk − Φkxk‖2

2 +
m∑

i=1

x2
ik

γc
i

+
x2

ik

γa
k i

,

(47)

which leads to an upper-bounding surrogate function of (24) as

Lpre
z (γc , {γa

k}) ≤ (zc)T γc +
K∑

k=1

α(za
k )T γa

k +
1
ν
‖yk − Φkxk‖2

2

+
m∑

i=1

x2
ik

γc
i

+
x2

ik

γa
k i

= L̃pre
z (γc , {γa

k},X), (48)

where the equality holds when X is the solution of (47). The
function L̃pre

z (γc , {γa
k},X) in (48) is jointly convex in γc , {γa

k},
and X, and thus by checking the first-order optimality condi-
tion we have the optimal solutions γc

i = zc−1/2
i ‖xi,·‖2 and γa

k i

= (αza
k i)

−1/2 |xik |. Then substituting the solutions into (48), we
have the optimization problem in (26).

For the covariance component model we have the following
expression

K∑

k=1

yT
k (Σsc

k )−1yk

= arg min
S,C

K∑

k=1

1
ν
‖yk − Φk (ck + sk )‖2

2 +
m∑

i=1

c2
ik

γc
i

+
s2

ik

γs
k i

,

(49)

which leads to an upper-bounding surrogate function of (25) as

Lcov
z (γc , {γs

k}) ≤ (zc)T γc +
K∑

k=1

β(zs
k )T γs

k

+
1
ν
‖yk − Φk (ck + sk )‖2

2 +
m∑

i=1

c2
ik

γc
i

+
s2

ik

γs
k i

= L̃cov
z (γc , {γs

k},C,S), (50)

where the equality holds when C and S are the solutions of (49).
The function L̃pre

z (γc , {γs
k},C,S) in (50) is jointly convex in

γc , {γs
k}, C and S, and thus by checking first-order optimality

condition we have the optimal solutions γc
i = zc−1/2

i ‖ci,·‖2
and γs

k i = (βzs
k i)

−1/2 |sik |. Then substituting the solutions into
(50), we have the optimization problem in (27).

APPENDIX C
PROOF FOR THEOREM 2

The idea behind the proof Theorem 2 is to show that the
proposed algorithms satisfy all the conditions of Zangwill’s



6158 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 23, DECEMBER 1, 2016

global convergence theorem [36]. Let Θ be a set of all possible
solutions, θ ∈ Θ be a point in the set, and A(θ) be a mapping
of θ to every point in Θ that satisfies the updating steps of
an algorithm. Let {θt}∞t=0 be a sequence of points such that
θt+1 ∈ A(θt). Zangwill’s global convergence theorem requires

1) all points θt are contained in a compact set;
2) there is a continuous function L(·), for every non-

stationary point θt ∈ Θ, L(θt+1) < L(θt), while for ev-
ery stationary point θt ∈ Θ, L(θt+1) ≤ L(θt);

3) A(θt) is closed at all non-stationary point θt .
Here, we provide the proof for the convergence of the pro-

posed algorithm for SSM-1, and the convergence of the pro-
posed algorithm for SSM-2 can be proved following related
arguments.

Firstly, for any non-stationary point θt ∈ Θ, the actual cost
function Lpre(θt) in (18) is strictly a tangent to the auxiliary
cost function Lpre

z (θt) in (24) where {za
k} and zc are given by

(21) and (23), respectively. As θt is a non-stationary point, the
slope of Lpre

z (θt) is nonzero. Then the proposed algorithm will
find another point θt+1 satisfying Lpre

z (θt+1) < Lpre
z (θt), which

further leads to Lpre(θt+1 , {za
k}, zc) < Lpre(θt , {za

k}, zc).
According to (20), we have

Lpre(θt+1) ≤ Lpre(θt+1 , {za
k}, zc)

< Lpre(θt , {za
k}, zc)

= Lpre(θt).

Secondly, if θt ∈ Θ is a stationary point of the actual cost
function Lpre(θ), then it must be a stationary point of Lpre

z (θt) in
(24), where {za

k} and zc are given by (21) and (23), respectively.
Therefore, the proposed algorithm will returns θt+1 = θt with
Lpre

z (θt) ≤ Lpre
z (θt+1), which leads to L(θt+1) ≤ Lpre(θt).

Finally, if any element of θt is unbounded, Lpre(θt) diverges
to infinity. Therefore, given an initial point θ0 , there exists a
closure for {θt}, and thus {θt} belongs to a compact set. In ad-
dition, as the cost function of the precision model is a real-valued
continuous function on θt � 0, by the Weierstrass theorem [41],
it follows thatA(θt) is nonempty for every θt � 0 and therefore
it is also closed by the Lemma 1 in [42].
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