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Abstract

Domain adaptive Object Detection (DAOD) leverages a
labeled domain (source) to learn an object detector gen-
eralizing to a novel domain without annotation (target).
Recent advances use a teacher-student framework, i.e., a
student model is supervised by the pseudo labels from a
teacher model. Though great success, they suffer from the
limited number of pseudo boxes with incorrect predictions
caused by the domain shift, misleading the student model to
get sub-optimal results. To mitigate this problem, we pro-
pose Masked Retraining Teacher-student framework (MRT)
which leverages masked autoencoder and selective retrain-
ing mechanism on detection transformer. Specifically, we
present a customized design of masked autoencoder branch,
masking the multi-scale feature maps of target images and
reconstructing features by the encoder of the student model
and an auxiliary decoder. This helps the student model cap-
ture target domain characteristics and become a more data-
efficient learner to gain knowledge from the limited number
of pseudo boxes. Furthermore, we adopt selective retrain-
ing mechanism, periodically re-initializing certain parts of
the student parameters with masked autoencoder refined
weights to allow the model to jump out of the local opti-
mum biased to the incorrect pseudo labels. Experimental
results on three DAOD benchmarks demonstrate the effec-
tiveness of our method. Code can be found at https://
github.com/JeremyZhao1998/MRT-release.

1. Introduction
Object detection has a wide range of real-world appli-

cation scenarios, and has been deeply studied in computer
vision researches. CNN-based [35, 32, 40] and transformer-
based [3, 51] detectors have shown great success in chal-
lenging benchmarks. However, they suffer from domain
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(b) Category AP during training

Figure 1. (a) Performance under limited number of box an-
notations. We adopt MAE in training target images with ground
truth labels, but manually reduce the amount of bounding boxes.
MAE boosts the performance by a large margin under limited
boxes. (b) Performance of Category “bicycle” during training.
The performance declines rapidly due to the local optimum caused
by incorrect pseudo boxes. With the help of retraining (every 40
epochs), the model is able to jump out of the local optimum.

shift where there is an obvious distribution gap between the
pretraining data and the deployed environment.

To mitigate the performance drop caused by domain shift
without extra annotation, unsupervised domain adaptation
(UDA) has been studied in classification, segmentation and
object detection tasks, where the model is trained on a la-
beled source domain and an unlabeled target domain, and
is expected to generalize well on the target domain. As a
branch of UDA, unsupervised domain adaptive object de-
tection (DAOD) researches [9, 49, 29, 48] utilize numerous
techniques such as adversarial alignment, image-to-image
translation, GNNs and mean teacher training, widely im-
proving domain adaptation performance of object detectors.

Among these approaches, [29, 48, 5, 20] use a teacher-
student framework where a teacher model produces pseudo
labels of the unlabeled target images to supervise a stu-
dent model, and has achieved significant performance gains.



However, the teaching process faces the challenge of low-
quality pseudo labels in which there are limited number of
pseudo boxes and incorrect predictions caused by the do-
main shift. Under such framework, pseudo labels are se-
lected from outputs of the teacher model by a threshold of
confidence scores. Selecting large amounts of pseudo labels
with lower threshold brings too many incorrect predictions,
degrading the performance, while with higher threshold, the
limited number of pseudo boxes provides sub-optimal su-
pervision. Blue bars of Figure 1(a) shows that even su-
pervised by ground truth labels without domain shift, the
performance drops significantly when the amount of box
annotations are reduced. Anyhow, incorrect predictions al-
ways exist, leading the model to get stuck at the local op-
timum. As is shown in Figure 1(b), in the later stage of
training, performance of some categories declines rapidly
(the blue curve) due to the growing number of incorrect
pseudo boxes. Though [29] utilizes adversarial alignment
and weak-strong augmentation to minimize the false posi-
tive ratio of pseudo labels, they ignore the sub-optimal su-
pervision of the limited number of pseudo boxes, and the
impact of incorrect pseudo labels which always exist.

To address this issue, we propose Masked Retraining
Teacher-student framework (MRT) which is built on the
baseline of adaptivee teacher-student framework for De-
formable DETR[51] detector, leveraging masked autoen-
coder (MAE) and selective retraining mechanism.

Unlike pretraining MAEs[19, 41] which leverage large-
scale training data under a pretrain-finetune paradigm, we
present a customized design of MAE branch, randomly
masking portions of multi-scale feature maps of the target
images and reconstructing the missing features from their
contexts by the encoder of the student model and an auxil-
iary decoder, simultaneously with the detection loss. As a
self-supervised task on target images, MAE leads the trans-
former encoder to gain more intimate knowledge of the tar-
get domain from the limited number of pseudo boxes. Em-
pirically, we observe that MAE helps the model encode bet-
ter features, improving the performance under any amount
of supervision and achieving larger gains when fewer box
annotations are provided, as is shown in Figure 1(a).

Furthermore, as the student model is sensitive to the
pseudo label noise, we adopt a simple yet effective selec-
tive retraining mechanism. Specifically, we periodically
re-initialize certain parts of the student parameters to al-
low the model to jump out of the local optimum biased to
the incorrect pseudo labels. Unlike existing retraining ap-
proaches [18, 34] that ignore the quality of re-initialization
weights, we re-initialize the student model with MAE re-
fined weights to avoid low-quality student weights to impact
the teacher model through EMA. In teacher-student frame-
work, an enhanced teacher model helps the student recover
rapidly after the re-initialization. As is shown in the orange

curve of Figure 1(b), retraining recovers the performance
that has been corrupted by noisy pseudo labels.

We summarize the contribution of this paper as follow:
1) We propose a novel Masked Retraining Teacher-student
framework(MRT) for training domain adaptive detection
transformers, which is built on the adaptive teacher-student
framework baseline and overcomes the problem of low-
quality pseudo labels. 2) To the best of our knowledge,
we are the first to present that masked autoencoder is a
data-efficient domain adapter which helps the model bet-
ter capture domain characteristics, and the first to adopt se-
lective retraining mechanism in teacher-student framework
to help the model jump out of local optimums. 3) Our
method outperforms existing approaches by a large margin
and achieves state-of-the-art on three DAOD benchmarks.

2. Related Work
Object detection: Object detection has been deeply

studied in computer vision. CNN-based methods[35, 30,
31] present region proposals networks and achieve out-
standing performance. One-stage detectors without region
proposals [32, 40] simplify the structure and perform faster.
Recently, transformer-based models [3, 51] are also devel-
oped in object detection, exploring token-wise dependen-
cies for context modeling. These methods all focus on su-
pervised learning, while we aim to generalize the model to
a novel domain without extra annotations. In this work,
we employ Deformable DETR[51] as the detector due to
its simplified one-stage structure and the flexible transfer-
learning ability of the transformer architecture.

Domain adaptive object detection: Domain adaptive
object detection (DAOD) is raised to overcome the domain
shift problem in object detection. As a pioneer work of
DAOD, [9] investigates adversarial feature alignment for
Faster R-CNN. Following [9], [21, 8, 27, 7, 4, 36, 46] ap-
ply different aspects of feature alignments, and [44, 24,
17] elaborately design alignments for transformer archi-
tectures. Numerous techniques such as image-to-image
translation[49], graph reasoning[28, 48] and pseudo label
self-training[12, 29, 48] have also been studied for DAOD.
Among existing approaches, methods utilizing teacher-
student framework achieve leading position in experimen-
tal performances. [29] utilizes adversarial alignment and
weak-strong augmentation to minimize the false positive ra-
tio of pseudo labels. [20] reduces domain shift by incorpo-
rating target object knowledge through self-distillation. [5]
employs uncertainty-guided self-training to promote both
classification and localization adaptations. Though great
success, they ignore the low-quality pseudo labels which
contains limited number of bounding boxes and incorrect
predictions. We build our method on the baseline of teacher-
student framework with adversarial alignment, introducing
MAE and selective retraining to overcome such problem.



Masked autoencoders: Autoencoding is a classical rep-
resentation learning method, utilizing an encoder to map
the input to a latent representation and a decoder to recon-
struct the input. Denoising autoencoders (DAE)[42] corrupt
the input signal and learn to reconstruct the original, uncor-
rupted signal. Recently, DAE methods are widely used in
large-scale pretraining tasks in both language models [13, 2]
and vision models [6, 14, 1], holding out a portion of the in-
put and train models to predict the missing content. The
influential MAE[19] randomly masks image patches with a
high portion and reconstruct the missing pixels by an asym-
metric architecture to pretrain a vision transformer that gen-
eralize well in downstream tasks. [41] explores MAE in
video pretraining, raising the point that MAE is a data-
efficient learner and domain shift is an important factor dur-
ing pretraining. [11] employs attention mask for DETR de-
coder as an unsupervised pretraining task. However, these
works all focus on pretraining transformer-based backbones
with all accessible data to generalize to downstream tasks,
without considering domain shift. We empirically observe
that feeding MAE with inputs from mismatched domain
provides sub-optimal results. Thus, we apply MAE only on
target images for domain adaptation, guiding the encoder to
better capture target domain characteristics.

Overcoming local optimums: Optimizing neural net-
works faces the challenge of local optimums. Regulariza-
tion methods such as Dropout[38] and DropBlock[16] try
to avoid the model from over-fitting or getting trapped in lo-
cal minimums by introducing randomness. [23] introduces
cyclic learning rate, but is inapplicable for transformer-
based models. Recent studies show that retraining is a sim-
ple yet effective way for transformers. [18] proposes DSD
retraining with reference to model pruning to avoid over-
fitting to noisy data, and [34] proposes selective retraining
mechanism for visual grounding transformers to converge
to better minimums. To the best of our knowledge, we are
the first to adopt retraining in teacher-student framework to
overcome the impact of incorrect pseudo labels. Under such
framework, quality of the re-initialization weights become
significant, which has not been studied in existing retrain-
ing approaches, since the teacher model may be influenced
by the re-initialized student weights to provide sub-optimal
pseudo labels. We re-initializing the student parameters
with MAE refined weights to avoid the problem.

3. Problem Formulation and Baseline

3.1. Problem Formulation

We first review the problem formulation of unsupervised
DAOD. Given a labeled source dataset Ds = {(xi

s, y
i
s)}

Ns
i=1

sized Ns and an unlabeled target dataset Dt = {xi
t}

Nt
i=1

sized Nt, where x denotes an image and y = (b, c) repre-
sents an annotation for object detection including bounding

box b and the corresponding category c, we train a domain
adaptive detector with both Ds and Dt, and evaluate the
detection performance on data in the target domain.

3.2. Adaptive Teacher-student Baseline Revisited

Recent advances [46, 48] use a teacher-student frame-
work combined with adversarial alignment and achieve
SOTA. Our method is built on the adaptive teacher-student
framework as baseline. We revisit the baseline as follow.

Teacher-student framework: A teacher model T and
a student model S share the same structure of backbone,
encoder and decoder. The teacher takes a weakly aug-
mented target image xt and produces pseudo labels (b̂t, ĉt).
The student takes both source and target images which are
strongly augmented. Supervised loss Lsup is calculated on
xs with their ground truth labels same as [51]:

Lsup = LS
box(xs, ys) + LS

giou(xs, ys) + LS
cls(xs, ys) (1)

while xt receive supervision from pseudo labels, but only
in classification task following [46] as unsupervised loss:

Lunsup = LS
cls(xt, b̂t, ĉt) (2)

The teacher is only updated by Exponential Moving Aver-
age (EMA) from the student without gradient accumulation:

θt ← αθt + (1− α)θs (3)

where θt and θs denotes the model parameters of teacher
and student respectively, and α is a hyper-parameter.

Discriminators for adversarial alignment: Domain
discriminators D are placed after certain components to
predict the domain label of the features, updated by BCE
loss. On Deformable DETR detector, we set discriminators
for the backbone, encoder and decoder to provide global
level, token-wise multi-scale feature level and instance level
alignment respectively, and Ldis denotes their weighted
sum. The adversarial optimization objective is formulated:

Ladv = max
S

min
D
Ldis (4)

where S,D denotes the student and discriminators respec-
tively. Gradient Reverse Layers(GRL)[15] is adopted for
min-max optimization. Overall objective of the student is:

Lteach = Lsup + Ladv + λunsupLunsup (5)

where λunsup is the hyper-parameter, while the teacher is
updated only by EMA which has been discussed. Before
teaching process, the model will first be trained with Lsup

using annotated source data Ds, and both teacher and stu-
dent model will be initialized with such parameters.

The adaptive teacher-student baseline on Deformable
DETR outperforms most existing DAOD approaches. How-
ever, the problem of low-quality pseudo labels still exist,
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Figure 2. Overview Masked Retraining Teacher-student framework(MRT). The adaptive teacher-student baseline consists of a teacher
model which takes weakly-augmented target images and produces pseudo labels, and a student model which takes strongly augmented
source and target images, supervised by ground truth labels and pseudo labels respectively. Adversarial alignment are applied on backbone,
encoder and decoder. Our proposed MAE branch masks feature maps of target images, and and reconstructs the feature by student encoder
and an auxiliary decoder. Our proposed selective retraining mechanism periodically re-initialize certain parts of the student parameters as
highlighted. The teacher model is updated only by EMA from the student model. Empirically, we use the teacher model at inference time.

leading the model to sub-optimal results, as has been shown
in Figure 1. Our proposed method overcomes this issue by
introducing MAE branch and selective retraining mecha-
nism which will be elaborated in the following section.

4. Proposed Method

4.1. Method Overview

Our proposed method can be overviewed in Figure 2,
which is built on the adaptive teacher-student baseline dis-
cussed in Section 3.2. We propose a customized design
of masked autoencoder(MAE) branch for student model,
randomly masking a portion of the multi-scale feature maps
of the target images, feeding them into the encoder, and in-
troducing an auxiliary decoder to reconstruct the missing
features from their contexts. As a self-supervised task on
target images, MAE leads the transformer encoder to gain
more intimate knowledge of the target domain, thus helps
the model better capture target domain characteristics and
boosts the performance when the amount of pseudo boxes
are limited. Employing selective retraining mechanism,
we periodically re-initialize parts of the student parameters
with the MAE refined weights, as is illustrated in Figure 2
with marked units, while the teacher model is continually
updated via exponential moving average (EMA) from the
student model. In this way, the teacher model continually
produces relatively high-quality pseudo labels without be-

ing corrupted by re-initialized low-quality student weights,
and the student model is allowed to jump out of the local
optimum biased to the incorrect pseudo boxes. Selecting
pseudo labels from outputs of the teacher is also important.
A fixed confidence threshold is often used, but is unaware
of the imbalance sample class distribution and the training
period. We propose a dynamic threshold strategy to set
different thresholds for each category dynamically during
training, selecting appropriate amount of pseudo boxes.

4.2. Masked Autoencoder Branch

We propose a customized design of MAE branch for the
student model to better capture target domain characteristic
as a self-supervised domain adapter, and to effectively gain
knowledge from the limited number of high-quality pseudo
boxes. The multi-scale feature maps of target images will be
masked and fed into the student encoder, and reconstructed
by an auxiliary decoder. The masking and reconstructing
processes are elaborated as follows.

Feature masking: Unlike ViT [14] backbone which di-
rectly takes image patches as the input, the Deformable
DETR encoder takes the multi-scale feature maps {zi ∈
RCi×Hi×Wi}Ki=1 which are projected from the output of the
backbone, where K denotes the number of scales. We ran-
domly generate masking {mi ∈ {0, 1}Hi×Wi}Ki=1 for ev-
ery scale of the feature maps with the same masking ratio.
The deformable attention rely on the spatial structure of the



feature maps to generate reference points and sampling lo-
cations that is used to choose points on the value matrix to
perform sparse attention, so the spatial structure of the input
cannot be serialized. As a result, we set the masked portion
of the corresponding value matrix to zero in deformable at-
tention to perform zero-masking, unlike [19] that only sends
unmasked patches as a serialized input to ViT.

Reconstruction: The encoder takes the masked fea-
ture maps, and further encodes the feature maps with de-
formable attention. On the output features of the encoder,
we fill the masked portion with a shared mask query qm and
send them to an auxiliary MAE decoder Sm to reconstruct
the feature map. Following [19], we adopt an asymmet-
ric lightweight decoder. Since the last layer of the back-
bone outputs, i.e., zK contains all the semantic information,
we only reconstruct it to speed up convergence and reduce
computation. The last layer of MAE decoder is a linear
projection whose output channels equals to the channels of
zK . Eventually, we compute mean square error (MSE) be-
tween the reconstructed and original features, but only on
the masked portion, formulated as:

ẑK = Sm(Se(mask(m,xt)), qm) (6)
Lmask = LMSE(mask(mK , ẑK),mask(mK , zK)) (7)

where Se, Sm, qm denotes the encoder of student model, the
auxiliary MAE decoder and the mask query respectively.

Training data: Note that although student model takes
both source and target images, we employ MAE only on
target images, since DAOD aims to train the detector to per-
form better on the unlabeled target domain, and applying
MAE with source images leads the model to generate source
domain features with sub-optimal performance. Employing
MAE on target images helps the student encoder to gain
more intimate knowledge of the target domain, and boosts
performance when high-quality pseudo labels are limited.
We apply MAE on student model instead of teacher, for it is
the student model who suffer from sub-optimal supervision
of the limited pseudo boxes. Besides, the teacher model is
not supervised by any detection loss. Employing MAE on
the teacher model creates an encoder that is incompatible
with the decoder and detection head, thus is unable to pro-
vide meaningful pseudo labels.

Training strategy: We train the MAE branch and detec-
tion loss simultaneously instead of following the pretrain-
finetune paradigm, since pretraining leads the model to
over-fit to reconstruction task due to the relatively small
dataset with distinctive domain characteristics. Before the
teaching process, we first train the model with Lsup in
Equation(1) together with Lmask in Equation(7) to produce
an enhanced initialization θmask for teaching, and as a re-
fined re-initialization for selective retraining. The overall
objective of student model in teaching process is:

L = Lteach + λmaskLmask (8)

where Lteach has been formulated in Equation(5), and
λmask is the coefficient of Lmask in Equation(7). As the
teaching process continues, adequate amount of pseudo
boxes will be produced, and the influence of Lmask should
be lowered to avoid the encoder over-fitting to reconstruc-
tion task. As a result, We decay λmask as teaching contin-
ues. More details will be discussed in Section 5.4.

4.3. Selective Retraining Mechanism

The transformer-based models tend to over-fit without
large-scale training data, especially when noisy annotations
are included. Here in our case, pseudo labels always contain
noise since they are provided by the updating teacher model
instead of ground truths. As is shown in Figure 1(b), in
later stage of the teaching process, performance of certain
categories are severely influenced due to the over-fitting to
the incorrect pseudo labels. Worse still, since the teacher
model is continually updated via EMA from student model,
it could also by affected and produces even worse pseudo
labels. We adopt selective retraining mechanism on student
branch to help student model jump out of local optimums
biased to incorrect pseudo labels.

To be specific, during teaching period, we continually
update the teacher model via EMA without retraining it, but
periodically re-initialize parts of the student model with the
MAE refined parameters θmask which has been discussed
in Section 4.2. Though θmask do not contain detection
knowledge, its target domain encoding ability has not been
corrupted by noisy pseudo labels. After re-initialization,
the retrained components are allowed to leave the local
optimum and can be guided by the fixed parts which can
be regarded as better trained, and by an enhanced teacher
which is continually updated. We do not retrain the teacher
model since re-initialization cause a sudden drop of pseudo
label quality, thus deteriorate the teaching process. We
re-initialize the student model with MAE refined weights
θmask rather than source-only trained weights or random
weights for a quicker recovery, preventing its negative in-
fluence to teacher via EMA. We choose the retrained com-
ponents by experimental studies. We try to perform re-
initialization on different parts of the student model and
choose the setting with best performance in which the de-
coder is kept while the backbone and encoder are retrained.
More details will be discussed in Section 5.4.

4.4. Dynamic Threshold

Existing teacher-student frameworks on DAOD set a
fixed confidence threshold to select pseudo labels from out-
puts of the teacher model. However, we observe in experi-
ments that as the teaching process continues, the predicted
confidence scores tend to rise, introducing too many pseudo
labels which contain much more incorrect labels. Besides,
fixed threshold for every category ignores the category dis-



Method Detector person rider car truck bus train mcycle bicycle mAP
FasterRCNN[35](Source) FRCNN 26.9 38.2 35.6 18.3 32.4 9.6 25.8 28.6 26.9
DA-Faster[9] FRCNN 29.2 40.4 43.4 19.7 38.3 28.5 23.7 32.7 32.0
UMT[12] FRCNN 33.0 46.7 48.6 34.1 56.5 46.8 30.4 37.3 41.7
TIA[50] FRCNN 34.8 46.3 49.7 31.1 52.1 48.6 37.7 38.1 42.3
D-adapt[25] FRCNN 40.8 47.1 57.5 33.5 46.9 41.4 33.6 43.0 43.0
SIGMA[28] FRCNN 44.0 43.9 60.3 31.6 50.4 51.5 31.7 40.6 44.2
AT1[29] FRCNN 43.7 54.1 62.3 31.9 54.4 49.3 35.2 47.9 47.4
TDD[20] FRCNN 50.7 53.7 68.2 35.1 53.0 45.1 38.9 49.1 49.2
PT[5] FRCNN 40.2 48.8 63.4 30.7 51.8 30.6 35.4 44.5 42.7
FCOS[40] (Source) FCOS 36.9 36.3 44.1 18.6 29.3 8.4 20.3 31.9 28.2
EPM[22] FCOS 44.2 46.6 58.5 24.8 45.2 29.1 28.6 34.6 39.0
SSAL[33] FCOS 45.1 47.4 59.4 24.5 50.0 25.7 26.0 38.7 39.6
Def DETR[51] (Source) Def DETR 37.7 39.1 44.2 17.2 26.8 5.8 21.6 35.5 28.5
SFA[44] Def DETR 46.5 48.6 62.6 25.1 46.2 29.4 28.3 44.0 41.3
MTTrans[48] Def DETR 47.7 49.9 65.2 25.8 45.9 33.8 32.6 46.5 43.4
O2net[17] Def DETR 48.7 51.5 63.6 31.1 47.6 47.8 38.0 45.9 46.8
AQT[24] Def DETR 49.3 52.3 64.4 27.7 53.7 46.5 36.0 46.4 47.1
MRT(Ours) Def DETR 52.8 51.7 68.7 35.9 58.1 54.5 41.0 47.1 51.2

Table 1. Results of Cityscapes to Foggy Cityscapes(0.02). “FRCNN” denotes Faster R-CNN and “Def DETR” denotes Deformable DETR.

tribution of samples. To address this issue, we initialize the
thresholds for each category by a same value, and dynami-
cally update them based on the predicted confidence scores
of the source domain instances. In this way, the thresholds
for each category could be updated differently. More de-
tails and discussion of the rationality and effectiveness of
this method can be found in Appendix.

5. Experiments

5.1. Datasets

Following existing DAOD approaches [44, 48, 17, 24],
we evaluate our method on the following benchmarks.

Cityscapes to Foggy Cityscapes: Cityscapes[10] is col-
lected from urban scenes containing 2,975 images for train-
ing and 500 images for validation. Foggy Cityscapes[37] is
constructed by a fog synthesis algorithm from Cityscapes.
We use Cityscapes as source domain and Foggy Cityscapes
with highest fog density(0.02) as target domain.

Cityscapes to BDD100k-daytime: BDD100k[47] is a
large-scale driving dataset. Its daytime subset containing
36,728 training images and 5,258 validation images is com-
monly used in DAOD. We used Citycapes as source domain
and BDD100k-daytime as target domain.

Sim10k to Cityscapes(car): Sim10k[26] is a synthetic
dataset from GTA game engine containing 10,000 images.
We use Sim10k as source domain and “car” instances in
Cityscapes as target domain.

1We run Foggy(0.02) on AT’s open source code to get the results instead
of its originally reported Foggy(all) for a fair comparison.

5.2. Implementation Details

We use Deformable DETR [51] as our base detector. For
loss coefficients, we set λunsup = 1.0 and initial λmask =
1.0. For the discriminators, the coefficients of backbone,
encoder and decoder is set 0.3, 1.0, 1.0 respectively. We set
the weight smooth parameter α = 0.9996 in EMA. For dy-
namic threshold, we initialize the thresholds for each cate-
gory by 0.3. For MAE branch, we use a 2-layer asymmetric
decoder and a mask ratio of 0.8. We optimize the network
by Adam optimizer with initial learning rate 2 × 10−4 and
batch size 8. The data augmentation methods include ran-
dom horizontal flip for weak augmentation, and randomly
color jittering, grayscaling and Gaussian blurring for strong
augmentations. Algorithms are implemented by PyTorch.
More implementation details which differ between bench-
marks can be seen in Appendix.

5.3. Comparing with Other Methods

We compare our proposed MRT with other methods
on the three benchmarks mentioned above. Our proposed
MRT outperforms previous methods, and achieves signifi-
cant improvements compared with DETR-based methods.
As shown in Table 1, for categories with fewer instances
(i.e.“truck”) in Cityscapes to Foggy Cityscapes, MRT per-
forms much better, as the data-efficient MAE branch boost
the performance. For confusing categories (i.e.“bicycle”
and “motorcycle”), MRT has a significant performance gain
with the help of selective retraining mechanism. As shown
in Table 2, on Cityscapes to BDD100k-daytime where the
class distribution of target dataset is largely different from



Method Detector person rider car truck bus mcycle bicycle mAP
FasterRCNN[35](Source) FRCNN 28.8 25.4 44.1 17.9 16.1 13.9 22.4 24.1
DA-Faster[9] FRCNN 28.9 27.4 44.2 19.1 18.0 14.2 22.4 24.9
ICR-CCR-SW[45] FRCNN 32.8 29.3 45.8 22.7 20.6 14.9 25.5 27.4
FCOS[40] (Source) FCOS 38.6 24.8 54.5 17.2 16.3 15.0 18.3 26.4
EPM[22] FCOS 39.6 26.8 55.8 18.8 19.1 14.5 20.1 27.8
Def DETR[51] (Source) Def DETR 38.9 26.7 55.2 15.7 19.7 10.8 16.2 26.2
SFA[44] Def DETR 40.2 27.6 57.5 19.1 23.4 15.4 19.2 28.9
AQT[24] Def DETR 38.2 33.0 58.4 17.3 18.4 16.9 23.5 29.4
O2net[17] Def DETR 40.4 31.2 58.6 20.4 25.0 14.9 22.7 30.5
MTTrans[48] Def DETR 44.1 30.1 61.5 25.1 26.9 17.7 23.0 32.6
MRT(Ours) Def DETR 48.4 30.9 63.7 24.7 25.5 20.2 22.6 33.7

Table 2. Results of Cityscapes to BDD100k-daytime.

Method Detector carAP
Faster R-CNN(Source)[35] FRCNN 39.4
DA-Faster[9] FRCNN 41.9
MeGA-CDA[43] FRCNN 44.8
GPA[45] FRCNN 47.6
ViSGA[36] FRCNN 49.3
KTNet[39] FRCNN 50.7
PT[5] FRCNN 55.1
FCOS(Source)[40] FCOS 42.5
EPM[22] FCOS 47.3
SSAL[33] FCOS 51.8
Deformable DETR(Source)[51] Def DETR 47.4
SFA[44] Def DETR 52.6
AQT[24] Def DETR 53.4
O2net[17] Def DETR 54.1
MTTrans [29] Def DETR 57.9
MRT(Ours) Def DETR 62.0

Table 3. Results of Sim10k to Cityscapes(car).

source, MRT still achieves leading. As shown in Table 3,
on Sim10k to Cityscapes(car), MRT outperforms previous
SOTAs, indicating that our proposed method stays effective
under larger domain gap.

5.4. Ablation Study and Analysis

In this section, we provide ablation study and analysis
of our proposed approaches. All experiments are conducted
on Cityscapes to Foggy Cityscapes.

Quantitative Ablation Study: The effect of proposed
modules are presented in Table 4, from which we can ob-
serve: 1) Introducing MAE branch without teacher-student
framework (line 2) shows a significant improvement com-
pared with source-only trained model, indicating that MAE
is a data-efficient domain adapter. 2) MAE branch, selective
retraining and dynamic filter respectively improves the per-
formance by a large margin (line 4-6) when independently

Source Baseline DT Retrain MAE mAP
✓ 28.5
✓ ✓ 35.8
✓ ✓ 44.9
✓ ✓ ✓ 45.5
✓ ✓ ✓ ✓ 48.3
✓ ✓ ✓ ✓ 48.1
✓ ✓ ✓ ✓ ✓ 51.2

Table 4. Ablation studies of proposed modules on Cityscapes
to Foggy Cityscapes. “Source” denotes the source-only trained
model. “Baseline” denotes the adaptive teacher-student baseline.
“DT”, “Retrain” and “MAE” denotes proposed dynamic threshold,
selective retraining and masked autoencoder branch, respectively.

used, illustrating their effectiveness. 3) Retraining combin-
ing with MAE refined re-initialization (line 7) further im-
proves the performance, indicating that our proposed design
maximizes the advantages of both modules.

Qualitative visualization analysis: We provide quali-
tative visualization analysis of pseudo labels and feature
distributions. Figure 3 shows the selected pseudo labels.
From Figure 3(b) to 3(c), MAE guide the model to provide
more pseudo labels, and from Figure 3(c) to 3(d), selec-
tive retraining filters out incorrect pseudo labels and pre-
dicts closer to ground truth. Figure 4 visualizes the fea-
tures of two domains by t-SNE. MAE branch provides a
much better initialization compared to source-only trained
model, and our proposed MRT further bridges the domain
gap. More visualization figures can be seen in Appendix.

Analysis of MAE branch: Table 5 shows the detailed
results of MAE ablation. Table 5(a) indicates that rela-
tively high mask ratio yields a nontrivial and meaningful
self-supervisory task. Table 5(b) explores the decay strategy
of MAE coefficient λmask. “no decay” denotes the MAE
loss continually exists with fixed λmask. “linear” denotes
λmask decays linearly during teaching process. “hard” de-



(a) Source-only (b) Baseline (c) MRT w/o Retrain (d) MRT (ours) (e) Ground truth

Figure 3. Qualitative ablation: pseudo labels for Foggy Cityscapes. “Baseline” denotes the adaptive teacher-student baseline.

(a) Source-only (b) Source+MAE (c) MRT (ours)

Figure 4. Qualitative ablation: feature visualization of the two
domains on Cityscapes to Foggy Cityscapes by t-SNE. The blue
and orange points denotes source and target features respectively.

Mask ratio mAP
0.5 47.1
0.8 48.3
0.9 46.8

(a) Mask ratio

Strategy mAP
No decay 47.9

Linear 48.2
Hard 48.3

(b) Coefficient decay

Training data mAP
Source 44.5

Source & Target 47.0
Target 48.3

(c) MAE Training data

MAE usage mAP
w/o MAE 44.9
Pretrain 42.7

MAE branch 48.3
(d) MAE usage

Table 5. Ablation studies of MAE branch. (a) Results of differ-
ent mask ratios. (b) Results of coefficient decay strategies. (c) The
training data that MAE are applied to. (d) The usage of MAE (as
a branch or as an independent pretraining stage).

notes that we drop the MAE branch after a certain teach-
ing epoch. “No decay” receives sub-optimal result for the
MAE branch benefits less when more pseudo labels are pro-
vided, thus its influence to the overall objective should be
lowered at later stage of training. Table 5(c) illustrates that
MAE is sensitive to domain shift of the input data. Training
with target features receives better performance on target
evaluation compared with the inputs that consist source im-
ages. Table 5(d) compares the result of MAE branch with
the pretrain-finetune paradigm which is commonly used in
pretraining tasks, indicating that in DAOD, pretraining on
relatively small dataset with distinctive domain characteris-
tics leads the model to over-fit on reconstruction task. MRT
use a customised MAE branch to overcome this issue.

Analysis of Selective Retraining: Utilizing selective

Bac. Enc. Dec. mAP
44.9

✓ ✓ ✓ 46.0
✓ ✓ 46.6

✓ ✓ 47.1
✓ ✓ 48.1

(a) Retrained module

Weights mAP

random 45.5
source 48.1

source+MAE 51.2

(b) Re-initialization weights

Table 6. Ablation studies of selective retraining. (a) Results of
different retrained modules (tick for retrained). “Bac.”, “Enc.” and
“Dec.” denotes backbone, encoder and decoder respectively. (b)
Results of different re-initialization weights.

retraining, we periodically re-initialize some components
of the model while keeping other components as enhanced
parts. In teacher-student framework, we do not re-initialize
teacher as has been discussed in Section 4.3. For the student
model, we choose the retrained modules through experi-
mental results. Table 6(a) shows that keeping the decoder
updated and retraining backbone and decoder gets the best
performance. For the re-initialization weights, Table 6(b)
shows that MAE refined weights receives the best perfor-
mance. Further discussion on the selective retraining mech-
anism can be seen in Appendix.

6. Conclusion

In this paper, we propose a novel Masked Retraining
Teacher-student framework (MRT) on domain adaptive ob-
ject detection task. Our customized design of masked au-
toencoder branch helps the student model better capture tar-
get domain characteristics and gain knowledge from limited
amount of pseudo boxes, and the selective retraining mech-
anism allows the model to jump out of the local optimum
biased to the incorrect pseudo labels. Experiments on three
benchmarks confirmed the effectiveness of our model. Ex-
tensive ablation experiments demonstrate that every design
helps to improve domain adaptation ability of the model.
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