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Abstract

In this paper, we address the problem of video temporal sen-
tence localization, which aims to localize a target moment
from videos according to a given language query. We observe
that existing models suffer from a sheer performance drop
when dealing with simple phrases contained in the sentence.
It reveals the limitation that existing models only capture the
annotation bias of the datasets but lack sufficient understand-
ing of the semantic phrases in the query. To address this prob-
lem, we propose a phrase-level Temporal Relationship Min-
ing (TRM) framework employing the temporal relationship
relevant to the phrase and the whole sentence to have a better
understanding of each semantic entity in the sentence. Specif-
ically, we use phrase-level predictions to refine the sentence-
level prediction, and use Multiple Instance Learning to im-
prove the quality of phrase-level predictions. We also exploit
the consistency and exclusiveness constraints of phrase-level
and sentence-level predictions to regularize the training pro-
cess, thus alleviating the ambiguity of each phrase prediction.
The proposed approach sheds light on how machines can un-
derstand detailed phrases in a sentence and their composi-
tions in their generality rather than learning the annotation bi-
ases. Experiments on the ActivityNet Captions and Charades-
STA datasets show the effectiveness of our method on both
phrase and sentence temporal localization and enable better
model interpretability and generalization when dealing with
unseen compositions of seen concepts. Code can be found at
https://github.com/minghangz/TRM.

Introduction

Video temporal sentence localization has become an impor-
tant research problem due to its potential for a wide range of
practical applications, requiring intelligent systems to iden-
tify the start and end timestamps of segments (i.e., moments)
with respect to any given language queries in an untrimmed
video. Using free-form natural language as queries allows
users to freely search for interesting content without being
restricted to pre-defined classes, which makes sentence lo-
calization have greater application potential. The model is
expected to understand the visual and language concepts and
their compositions to achieve robust performance.
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Figure 1: (a) The sentence-level (in green) and phrase-level
(in blue) prediction. We make two assumptions about the
relationship between phrases and sentences: 1) Consistency:
for each phrase, the phrase-level prediction should overlap
the sentence ground truth (in green); 2) Exclusivity: for each
video clip that does not intersect with sentence ground truth
(in red), at least one phrase’s prediction does not overlap it.
(b) shows the evaluation results of the existing model (Wang
et al. 2021b) and our method on the Charades-STA (R@1,
IoU=0.3) when using sentences or phrases as queries.

Fully supervised approaches have made steady progress
in the last decades when the queries are complete sentences.
However, human-generated queries ‘in the wild” vary a lot
in terms of specificity, we expect models to deal with both
complete sentences (the query marked in green in Fig. 1(a))
and short phrases (the query marked in blue in Fig. 1(a)) to
be competent for real-world applications. However, we em-
pirically observe that even the most recent open-source mod-
els learned by using sentence annotations lack the capability
to deal with the phrase-level query, as shown in Fig. 1(b).
We evaluate the existing method (Wang et al. 2021b) on the



Charades-STA dataset, and observe a sheer drop in predic-
tion accuracy: loU@0.3 is dropped by 22.07% and 27.35%
when dealing with simpler verb queries and noun queries.

Usually, a word or group of words forms a syntactic con-
stituent with a single grammatical function (ie. verb, sub-
ject, or object), representing a more straightforward seman-
tic meaning than sentences (no need to understand their
compositions). The typical failure in much more straight-
forward scenarios reveals the following problems. First, ex-
isting models tend to capture the annotation bias in the
benchmark but lack sufficient understanding of the intrinsic
relationship between simple visual and language concepts.
Consequently, existing models may easily fail when the un-
realistic assumption of the in-distribution test setting does
not hold, i.e., incapable of generalizing to novel combina-
tions of visual entities and text, which is also revealed by
(Otani et al. 2020; Yuan et al. 2021; Li et al. 2022a). Second,
the models’ interpretability and robustness are questioned
since they fail to deal with simple (atomic) concepts, even
though they achieve decent results in sentence-level predic-
tion tasks. This may hinder the application of these methods
in real scenarios.

Motivated by the above observations, we attempt to take
phrase-level prediction into consideration of temporal lo-
calization models’ designation. To avoid the high anno-
tation cost and subjective annotation bias of fine-grained
phrases, we propose phrase-level Temporal Relationship
Mining (TRM) framework to improve the phrase tempo-
ral localization using sentence-level supervision only. The
two key ideas underpinning this framework are as follows.
First, inspired by the successful application of Multiple In-
stance Learning (MIL) to weakly supervised temporal sen-
tence localization, we train the model to discriminate be-
tween matched and unmatched video-phrase pairs with-
out phrase-level annotations. Second, in order to consider
the constraints of sentence-level annotations on phrase-level
predictions, we exploit the temporal localization relationship
relevant to the phrase and the whole sentence and follow
the two design principles -consistency and exclusiveness.
Specifically, consistency requires every phrase-level predic-
tion should share a period with the annotated sentence-level
ground truth. As shown in Fig 1(a), all predictions of the
phrases “puts on”, “gloves”, “clean” and ’snow” should
overlap with the sentence ground truth annotation (in green).
Exclusiveness requires that every period not intersect the
sentence ground truth (as shown in red boxes in Fig 1(a))
is at least excluded from one phrase-level prediction (not in-
tersect at least one phrase prediction). Combining the above
two key ideas, the performance of our model on phrase
level prediction has been significantly improved (18.62%
improvement for verb phrases and 45.12% improvement for
noun phrases in Fig. 1(b)).

Our contributions are summarized as follows: (1) We
highlight the importance of phrases in video temporal lo-
calization and exploit the temporal relationship relevant to
phrases and the whole sentence. (2) We propose phrase-level
Temporal Relationship Mining (TRM) framework to inves-
tigate phrase-level prediction using sentence-level supervi-
sion only, which proposes the consistency and exclusive-

ness constraints to regularize the training process. (3) Exper-
iments on Charades-STA and ActivityNet Captions demon-
strate our method’s ability to improve phrase-level perfor-
mance while performance in sentence-level settings remains
stable, achieving better generalization performance.

Related Work
Temporal Sentence Localization

Since being proposed by TALL (Gao et al. 2017), the task
has drawn wide attention. Most previous methods either
generate candidate proposals and rank them using multi-
modal features (Zhang et al. 2020b), or use multi-modal
features to generate timestamp predictions directly (Zhang
et al. 2020a). Recent works have started to consider fine-
grained vision and language information. For example, for
vision information, DORi (Rodriguez-Opazo et al. 2021)
and MARN (Liu et al. 2022b) consider the features of ob-
jects within the video and improve models’ performance.
Correspondingly, for language features. LGI (Mun, Cho,
and Han 2020) generates sub-query features to implicitly
consider fine-grained text features and boost sentence lo-
calization performance. MMN (Wang et al. 2021b) trains
the model to distinguish matched and unmatched video-
sentence pairs collected from both intra-video and inter-
video. MGSL-Net (Liu et al. 2022a), which uses memory
to reinforce uncommon samples in the training process.
EMB (Huang et al. 2022) constructs elastic boundaries to
handle the uncertainties in temporal boundary. VISA (Li
et al. 2022a) considers the distribution of different entities
and conducts the Charades-CG and ActivityNet-CG dataset
splits to test the compositional generalization, where the
novel composition of seen phrases will appear in the test
split. However, we found that existing approaches perform
poorly when using simpler phrases as queries, suggesting
that they do not really understand the intrinsic connection
between vision and language. In this paper, we propose a
unified framework dealing with both sentence and phrase
queries simultaneously and improve the performance.

Multiple Instance Learning

Multiple Instance Learning (MIL) has been widely ap-
plied in computer vision, such as content-based image re-
trieval (Song et al. 2013), object localization, and segmen-
tation (Xu et al. 2015), computer-aided diagnosis and de-
tection (Xu et al. 2014), etc. Although (Huang et al. 2021;
Yang et al. 2021; Huang et al. 2021; Zheng et al. 2022a,b)
use MIL to solve the weakly supervised temporal sentence
localization, where only videos and natural language queries
are available during training, no previous work has tried to
use it to solve the phrase-level video temporal localization
problem.

Moreover, directly regarding phrase-level prediction as
a weakly supervised task and introducing MIL ignores the
constraint of sentence-level annotations on phrase-level pre-
dictions. Thus, we exploit the relationship between phrase-
level predictions and sentence-level annotations and put for-
ward the assumptions of consistency and exclusivity.



Phrase in Vision-Language Tasks

Phrase-level features can provide models with more fine-
grained text representations and have wide applications in
vision-language tasks, such as video grounding (Mun, Cho,
and Han 2020; Rohrbach et al. 2016), video captioning (Ryu
et al. 2021; Zhang and Peng 2019), etc. LGI (Mun, Cho,
and Han 2020) first exploits sub-query features. However, it
simply fuses them in an early stage to obtain fine-grained
sentence features, neither locating the phrases directly nor
considering the relationship between the localization results
of phrases and sentence. This results of LGI still perform
poorly when encountering phrases as queries, as shown in
Tab. 2. For the first time, PLPNet (Li et al. 2022b) directly
considers the problem of locating a phrase and improves the
performance of phrase-level localization through contrastive
learning. However, it has no extra constraints on phrase-level
predictions and sentence-level predictions, dismissing the
intrinsic connection between the video periods related to a
sentence and its phrases. In this paper, we propose a unified
framework to deal with both sentence and phrase queries si-
multaneously and improve the performance of both. We in-
troduce constraints from the perspective of prediction results
so that the TRM model can directly supervise the predicted
phrase-level timestamps without extra phrase-level annota-
tions. To our best knowledge, we are the first to investigate
the temporal relationship between phrase-level prediction
and sentence-level prediction explicitly. This setting is more
in line with real-world application scenarios and enables the
model to generalize to unseen combinations of seen phrases.

Method
Overview

Fig. 2 illustrates the overall architecture of our proposed
TRM framework. We first extract video representation and
generate a 2D Temporal Map (Zhang et al. 2020b). Mean-
while, the query encoder generates phrases and extracts text
features for both phrases and sentences. To represent the
similarity between the text and each video proposal, we gen-
erate score maps using the 2D temporal map and the text fea-
ture for sentences and all phrases. Due to the lack of phrase-
level annotation, we explored the consistency and exclusive-
ness relationship between phrases and sentences as the loss
function to regularize the training process and improve the
accuracy of phrase score maps. Since the phrase-level score
maps can provide more fine-grained information for the sen-
tence, we use them to refine the sentence score map with a
weighted sum option as well, and the weight of each phrase
represent its importance. Finally, we optimize the refined
sentence score map with an IoU regression loss and a con-
trastive learning loss.

Model Architecture

Video Encoder The video encoder aims at extracting
video features and generating a 2D temporal map for sim-
ilarity learning. We extract features from the input video
and encode them as a 2D temporal adjacent feature map
following MMN (Wang et al. 2021b). For an input video,
we first split it into small video clips, each containing equal

frames. Then we extract the clip-level visual feature with a
pre-trained CNN model. We can obtain IV clip-level features
{fVIN, € RV*4 where N is the number of clips and d is
the feature dimension. Then, we build up the 2D proposal
feature map FV' € RV*Nxd following MMN (Wang et al.
2021b), where proposal FV represents the video candidate
starting from the ¢-th clip and ending with the j-th clip.

Query Encoder The query encoder aims to generate fine-
grained phrases for a sentence and extract both sentence and
phrase-level text features. More specifically, given a query
sentence S, we first parse N, phrases [p1,p2,...,pn,] us-
ing pre-trained SRLBERT(Shi and Lin 2019). SRLBERT
assigns semantic role labels to each word in the sentence,
while we only keep the semantic roles with more than 1000
occurrences in the training set as phrases. Then, we use a
pre-trained DistilBERT (Sanh et al. 2019) model following
MMN (Wang et al. 2021b) to extract the features of sen-
tences and phrases at the same time. Phrases provide fine-
grained information to the sentence, and the sentence pro-
vides global information to phrases. Therefore, we further
interact sentence and phrase features through a single-layer
transformer encoder (Vaswani et al. 2017). The final sen-
tence feature and phrase features are represented as f° € R?
and I € RNr*4 respectively.

Similarity Learning Module To learn the semantic rele-
vance of each sentence and phrase with each temporal pro-
posal, we generate score maps for both sentence and phrases
according to the similarity of text and video features. In or-
der to improve the quality of phrase score maps, we propose
two assumptions of consistency and exclusivity to constrain
the phrase score maps. Since phrases provide finer-grained
semantic information for sentences, we use the phrase score
maps to refine the sentence score map so that it can sum-
marize the attentional information for each phrase. We use a
weighted sum option over the phrase score maps and lever-
age phrase weights to describe the importance of different
phrases. Finally, we optimize the refined sentence score map
with an IoU regression loss and a contrastive learning loss.
Score Map Generation. For the sentence, we perform
1 x 1 convolution operation on visual feature map F' and
perform a linear projection on text features f respectively
to project the features of two modalities into the same di-
mension d*’. The final representations of sentence features

£S5 e R and visual features FY, € RNXNxd" gre.
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where FC(-) is a fully connected network and Conv(-) is
an 1 x 1 convolution. Then we regard the cosine similar-
ity of f2, and F, as sentence-level score map: S¢ =

EYTfs € RNXN 'in which S; ; represents the similarity
score between the sentence and the proposal from the i-th
video clip to the j-th video clip.

Temporal Relation Mining. In previous works (Wang
et al. 2021b; Zhang et al. 2020b), the sentence score map
is directly used to predict the timestamps. However, it dis-
misses the fine-grained phrases inside the query, and has

poor performance when the query is a single phrase. To solve
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Figure 2: Our proposed TRM model framework focuses on the temporal relationship between a sentence and its phrases. Our
model consists of three modules: a video encoder extracts video features and generates a 2D temporal map; a query encoder
extracts both sentence-level and phrase-level features and a similarity learning module to mine the temporal relationship of
phrases and sentences based on our two constraints(consistency and exclusiveness) and leverage sentence-level contrastive
learning. We apply the phrase-level constraint loss considering the intrinsic relationship between sentences and phrases.
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Figure 3: The specific process of proposal segmentation and implementation of our consistency and exclusiveness principles.

this problem, we build phrase score maps and mine the tem-
poral relationship between the phrases and the sentence. Due
to the lack of phrase-level annotation data, we impose con-
straints between the phrase score maps for training purposes.
We have the following two hypotheses considering the rela-
tionship between phrases and sentences:

1. consistency: For paired sentences and videos, every
phrase-level prediction should share a period with the
annotated sentence-level ground truth. For unpaired sen-
tences and videos, at least one phrase-level prediction
does not share a period with the annotated ground truth.

2. exclusiveness: Each frame outside the ground truth is not
contained in at least one phrase-level prediction result.

In detail, we first obtain the text feature £ou e R

for the i-th phrase through Eq (1). Then we regard the co-
sine similarity as moments’ estimation score map S? of each

phrase: S7 = FYTfE — e RN*N Inspired by Multi-

ple Instance Learning, we also randomly sample unmatched
phrases in a batch and compute their score map SP. Based
on the degree of intersection with the sentence ground truth,
we divide all proposals into two subsets. As shown in the
left half of Fig. 3, all the proposals in Area I have an IoU
with the ground-truth moment large than a certain threshold
6, while the opposite is true for all proposals in Area II.

Our consistency loss ensures that each phrase-level pre-
diction should be located in Aera I, which is illustrated in
Fig.3. That is: for each phrase score map, the max score
(marked by black) in Area I should be 1. Our consistency
loss also requires that for a negative sentence, there should

be at least one phrase that mismatches any proposal in Area
Nneg
I, which is represented in Fig.3 as min max S; — 0. The
1

=1



consistency loss can be described as follows:

Loon =mibx(Ls( max SP[s,1],1))+

7

i=1 (5,1 €A
N, X @)
min(L¢( max S?[s,],0))

i=1 (s,t)eAr

where Ly is the focal loss (Lin et al. 2017) to balance the
positive and negative samples, A; represents Area I, and Ao
represents Area II.

Our exclusiveness loss requires that each proposal in Area
II should mismatch at least one phrase of the query sentence.
That is: as shown in Fig. 3, at least one of the phrase’s scores
should be O (i.e. the minimum score marked by green should
be 0) for all the proposals in Area II. The exclusiveness loss
can be described as follows:

1

‘Cex =
| Az

NP
> Lymin(s¥[s,d),0) )
(s,t)EA2 =
Sentence Score Map Refinement.. Since the phrase-level
score maps can provide more fine-grained information for
the sentence, we use them to refine the original sentence
score map S° € RV*N_ We gain the final sentence score
map S € RV*N by aggregating the score maps of the sen-
tence and all of its phrases, which is shown as follows:

a = softmax(MLPg([p1, p2, ..., PN, ])) )
S=5"+Y a;SP e RNV 5)

where o € R™»is the phrase weights that describe the im-
portance of different phrases, MLPs,; denotes a multilayer
perception with a output layer of 1-dimension.

To supervise the sentence score map, we apply the binary
cross entropy loss to regress the IoU score of each proposal.
Following (Zhang et al. 2020b), we adopt a scaled IoU
value y; as the supervision scale, but not a hard binary score.
Then the binary cross entropy loss can be expressed as

e
Liow=—7 >_(vilogSi + (1 - yi)log(1 - 5)),  (6)
i=1
where C' is the number of proposals.

Sentence-level  Contrastive  Learning. Following
MMN (Wang et al. 2021b), we also use contrastive learning
to provide more supervised signals to the model. We collect
positive and negative sentence-video pairs within and
between videos, and use noise contrastive estimation (Oord,
Li, and Vinyals 2018) to estimate two conditional dis-
tributions p(s|v) and p(v|s). The former represents the
probability that a sentence s matches the video v when
giving v, and the latter represents the probability that a
video v matches the sentence s when giving s. We adopt the
contrastive loss to help capture better information between
modalities as follows:

Leont =—(D_ logp(vs|s) + > logp(sy[v)) (7
s€eS veV
where S, V are the sets of training sentences and video in a

batch, v, is the video that matches the sentence s, and s,, is
the sentence that matches the video v.

Training and Inference
Training The total loss of our model is as follows.

L= £iou + ﬁcont + Lcon + £ew (8)

Given the lack of phrase-level annotations, we can still op-
timize the understanding of phrases during training with the
constraints between the whole sentence and phrases.

Inference At the inference time, when given a sentence
query, we can obtain the refined score maps S through Eq(5)
to make predictions. When given a single phrase query, we
can treat it as a sentence (as the text encoders for phrase
and sentence are shared). In this case, the score maps of the
sentence and phrase are the same and both can be used to
output phrase predictions.

Experiments
Dataset

Charades-STA Charades-STA (Gao et al. 2017) origi-
nates from Charades (Sigurdsson et al. 2016) dataset, con-
taining indoor videos with sentence queries and correspond-
ing annotations. There are 12,408 and 3,720 video-query
pairs for training and testing respectively. Our sentence-level
results are reported on the test split.

ActivityNet Captions ActivityNet Captions (Krishna
etal. 2017) contains 20K videos, with 37,417/17,505/17,031
video-query pairs in the train /val_1/val 2 split. We adopt
standard splits and report the sentence-level results on the
val_2 split.

Experiment Settings

Evaluation Metric. Following (Gao et al. 2017), we
adopt the “R@1,IoU = m” and mloU (the mean average
IoU) metrics to evaluate the model’s performance. Specifi-
cally, this metric evaluates the percentage of predicted mo-
ments that have the temporal Intersection over Union (IoU)
larger than the threshold m, and m is set to {0.3,0.5,0.7}.

Evaluation for phrase. When evaluating the performance
of phrases, we use a single phrase rather than a complete
sentence as the query, in which case the score map of the
sentence and phrase is the same and both can be used to out-
put predictions. Due to the lack of phrase-level annotations,
we adopt the action annotation used for the Temporal Ac-
tion Localization task and use the action names as the query
phrases. Although we only tested with verbs, our model can
handle arbitrary phrases. To prove this, we also use the ob-
ject annotations on the Charades-STA dataset provided by
(Yuan et al. 2017). We collect the common noun phrases in
the sentences, and get the time of the first appearance and
the last disappearance of the object in the object annotation
as the noised noun phrase ground truth timestamps. We re-
port the evaluation results of our model when using noun
phrases as queries in the ablation section. It is worth noting
that we only use the phrase-level annotations for evaluating
the model’s performance on phrases, and avoid using them
in the training process. So our experiment setting is fair com-
pared with others.



sentence prediction hrase prediction
Method featire | 103 ToU~0.5 ToUs07 miloU | ToU=03 ToU05  ToU20.7  mioU
SAP (Chen and Jiang 2019) — 27.42 13.36 —
MAN (Zhang et al. 2019) — 41.24 20.54 —
LGI (Mun, Cho, and Han 2020) 57.20 40.70 20.13 38.75
FVMR (Gao and Xu 2021) — 42.36 24.14 —
DRN (Zeng et al. 2020) — 42.90 23.68 —
SSCS (Ding et al. 2021) VGG — 43.15 25.54 —
CBLN (Liu et al. 2021) — 43.67 24.44 —
CPN (Zhao et al. 2021) 64.41 46.08 25.06 43.90
2D-TAN (Zhang et al. 2020b) 57.31 42.8 23.25 — 45.15 23.22 10.14 —
MMN (Wang et al. 2021b) 60.48 47.45 27.15 — 38.41 22.19 10.1 —
PLPNet (Li et al. 2022b) 57.82 41.88 20.56 39.12 46.24 22.94 7.69 28.46
TRM (ours) \ VGG \ 60.67 47.77 28.01 42.77 \ 57.03 33.69 11.86 35.82
Table 1: Sentence-level and Phrase-level prediction accuracy on Charades-STA.
Method ‘ feature sentence prediction phrase prediction
IoU=0.3 IoU=0.5 IoU=0.7 mloU | IoU=0.3 IoU=0.5 IoU=0.7 mloU
DORIi (Rodriguez-Opazo et al. 2021) 57.89 41.49 26.41 42.78
BPNet (Xiao et al. 2021) 58.98 42.07 24.69 42.11
VSLNet (Zhang et al. 2020a) 63.16 43.22 26.16 43.19
DeNet (Zhou et al. 2021) 61.93 43.79 — —
CPN (Zhao et al. 2021) 62.81 45.10 28.10 45.70
DRN (Zeng et al. 2020) — 45.45 24.36 —
SeqPAN (Zhang et al. 2021a) 61.65 45.50 28.37 45.11
FIAN (Qu et al. 2020) C3D 64.10 47.90 29.81 —
CBLN (Liu et al. 2021) 66.34 48.12 27.60 —
SMIN (Wang et al. 2021a) — 48.46 30.34
MGSL-Net (Liu et al. 2022a) — 51.87 31.42 —

LGI(Mun, Cho, and Han 2020) 58.48 41.65 24.1 41.48 35.39 21.07 9.76 25.14
2D-TAN(Zhang et al. 2020b) 59.45 4451 27.38 — 51.71 42.19 32.22 —
MIGCN(Zhang et al. 2021b) 60.03 44.94 27.85 43.59 42.25 33.75 16.37 30.9

RaNet(Gao et al. 2021) 60.96 45.59 28.67 44.82 47.44 37.51 27.58 38.45

MMN(Wang et al. 2021b) 65.05 48.59 29.26 — 51.91 42.27 32.88 —
PLPNet (Li et al. 2022b) 56.92 39.20 20.91 39.53 50.10 38.12 25.24 37.96
TRM (ours) \ C3D \ 66.41 50.44 31.18 47.68 52.46 42.84 33.68 43.29

Table 2: Sentence-level and phrase-level prediction accuracy on ActivityNet Captions.

Implementation Details. For the 2D temporal feature
map encoder, we use exactly the same settings with 2D-
TAN (Zhang et al. 2020b) and MMN (Wang et al. 2021b)
for fair comparisons. We use the VGG (Simonyan and Zis-
serman 2014) features for the Charades-STA dataset and
C3D features (Tran et al. 2015) for the ActivityNet Cap-
tions dataset, and the number of sampled clips N is 16 for
Charades-STA and 64 for ActivityNet Captions. For the text
encoder, we use the HuggingFace (Wolf et al. 2019) im-
plementation of DistilBERT (Sanh et al. 2019) with pre-
trained model following MMN (Wang et al. 2021b). We use
AdamW (Loshchilov and Hutter 2017) optimizer with learn-
ing rate 1 x 10~* and batch size 12 for Charades, learning
rate 1 x 10~* and batch size 20 for ActivityNet Captions.
The learning rate of DistilBERT is 1/10 of our main model.

Comparison with Other Methods

This part compares state-of-the-art models and TRM’s abil-
ity to deal with sentence-level and phrase-level prediction.
On both Charades-STA and ActivityNet Captions datasets,
we use sentences and verb phrases (obtained from action la-
bels used for the temporal action localization task) as queries

respectively. We reproduce some of the open-source meth-
ods to test the performance of phrase-level localization. For
fair comparison, all methods use C3D (Tran et al. 2015) fea-
tures on ActivityNet Captions and VGG (Simonyan and Zis-
serman 2014) features on Charades-STA.

As shown in Tab. 1, TRM achieves comparable results
when using completed sentences as queries and achieves an
absolute advantage when using verb phrases as queries. All
the existing methods we reproduced have a sheer drop when
using phrases as queries. This reveals that existing models
lack sufficient understanding of the intrinsic relationship be-
tween simple visual and language concepts. As shown in
Tab. 2, on ActivityNet Captions, our sentence prediction is
1.92% higher than baseline MMN (IoU=0.7) and achieves
comparable results with MGSL-Net.

As shown in Tab. 3, we test the compositional general-
ization of our method on ActivityNet-CG (Li et al. 2022a)
dataset. VISA (Li et al. 2022a) re-splits the ActivityNet
datasets and constructs the ActivityNet-CG datasets. The
test-trivial split has the same distribution as the training set,
the novel-composition split includes unseen compositions
of seen phrases, and the novel-word split includes unseen



Method Test-Trivial Novel-Composition Novel-Word
IoU=0.5 IoU=0.7 mloU | IoU=0.5 IoU=0.7 mloU | IoU=0.5 IoU=0.7 mloU
Weakly-supervised WSLL (Duan et al. 2018) 11.03 4.14 1507 | 2.89 0.76 7.65 | 3.09 1.13 7.10
RL-based TSP-PRL (Wu et al. 2020) 34.27 1880  37.05 | 14.74 1.43 12.61 | 18.05 3.15 14.34
LGI (Mun, Cho, and Han 2020) | 43.56 2329 4137 | 2321 9.02 27.86 | 23.10 9.03 26.95
Proposal-free VLSNet (Zhang et al. 2020a) 39.27 2312 4251 20.21 9.18 29.07 | 21.68 9.94 29.58
VISA (Li et al. 2022a) 47.13 29.64 44.02 | 31.51 16.73  35.85 | 30.14 1590  35.13
TMN (Liu et al. 2018) 16.82 7.01 17.13 8.74 4.39 10.08 9.93 5.12 11.38
Proposal-based 2D-TAN (Zhang et al. 2020b) 44.50 26.03  42.12 | 22.80 9.95 28.49 | 23.86 1037  28.88
TRM (Ours) 55.22 35.06 51.85 | 33.80 16.86  35.80 | 35.49 17.68  37.50
Table 3: Compositional generalization results on ActivityNet-CG dataset.
Method Sentence prediction Verb phrase prediction Noun phrase prediction
Phrase Consistency Exclusiveness | IoU=0.3 IoU=0.5 IoU=0.7 | IoU=0.3 IoU=0.5 IoU=0.7 | IoU=0.3 IoU=0.5 IoU=0.7
X X X 60.48 47.45 27.15 38.41 22.19 10.01 33.13 8.17 3.15
v X X 59.84 46.65 26.99 41.13 22.63 10.60 3541 7.36 2.68
v v X 60.22 46.56 27.31 56.69 30.85 10.85 71.12 51.67 8.57
v X v 60.13 45.89 27.80 38.90 22.11 10.46 36.88 8.63 3.01
v v v 60.67 47.77 28.01 57.03 33.69 11.86 78.25 57.10 10.17

Table 4: Ablation studies on the influence of phrase and score map and the implementation of our hypotheses.

words. We achieve the best performance on all the splits,
which proves that learning phrase prediction helps general-
ize to novel phrase compositions and novel words.

Ablation Studies

In this section, we conduct ablative experiments on the
Charades-STA dataset to analyze the necessity of phrase-
level information and phrase-level constraints.

As shown in Tab. 4, comparing the first and second rows,
we find that simply introducing fine-grained phrase fea-
tures without considering the relationship between phrase
and sentence-level predictions has limited performance im-
provement for phrase prediction. From the third row, we see
that consistency loss can greatly improve the performance
of phrase prediction. From the fourth row, it can be seen that
training with only exclusiveness loss has a negative impact
on the model. This is because only the exclusivity loss is in-
complete because the all-zero scores map of phrases is a set
of trivial solutions. From the fifth row, we can see that the
consistency loss and exclusiveness loss together can further
improve the performance of both sentences and phrases. The
results show that exploiting the consistency and exclusive-
ness constraints of phrase-level predictions and sentence-
level predictions can regularize the training process, thus al-
leviating the ambiguity of each phrase localization.

Qualitative Results

In Fig. 4, we visualize an example on Charades-STA
Dataset. As we see, our prediction for the sentence matches
the ground truth (in green) well. Also, TRM understands
that the entire sentence consists of three phrases: ‘drink-
ing’, ‘some coffee’, and ‘walks’. All the predictions satisfy
our constraints of consistency and exclusiveness. This shows
TRM understands the intrinsic relationship between simple
visual and language concepts.

Sentence ground truth:
0.2s

9.8s

Sentence:
0.0s 9.6s
Phrase: drinking

5.74s 17.22s
Phrase: some coffee

5.74s 19.13s
Phrase: walks
0.0s 9.6s

Figure 4: Qualitative results on Charades-STA.

Conclusion

In this work, we propose the phrase-level Temporal Rela-
tionship Mining (TRM) framework considering both phrase
and sentence queries, making the first attempt to mine the
phrase-proposal relation in the temporal localization task.
We develop a method to constrain phrase-level prediction
in training, tackling the lack of phrase-level annotation.
We propose the consistency and exclusiveness constraints
of phrase-level and sentence-level predictions to regularize
the training process, thus alleviating the ambiguity of each
phrase prediction. Experimental results on Charades-STA
and ActivityNet Captions indicate that our model surpasses
other models in phrase-level prediction while sentence-level
results remain stable, demonstrating our model’s compe-
tence, interpretability, and generalization performance.
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