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Abstract

Video moment localization aims at localizing the video seg-
ments which are most related to the given free-form natural
language query. The weakly supervised setting, where only
video level description is available during training, is getting
more and more attention due to its lower annotation cost.
Prior weakly supervised methods mainly use sliding win-
dows to generate temporal proposals, which are independent
of video content and low quality, and train the model to dis-
tinguish matched video-query pairs and unmatched ones col-
lected from different videos, while neglecting what the model
needs is to distinguish the unaligned segments within the
video. In this work, we propose a novel weakly supervised
solution by introducing Contrastive Negative sample Min-
ing (CNM). Specifically, we use a learnable Gaussian mask
to generate positive samples, highlighting the video frames
most related to the query, and consider other frames of the
video and the whole video as easy and hard negative samples
respectively. We then train our network with the Intra-Video
Contrastive loss to make our positive and negative samples
more discriminative. Our method has two advantages: (1) Our
proposal generation process with a learnable Gaussian mask
is more efficient and makes our positive sample higher qual-
ity. (2) The more difficult intra-video negative samples en-
able our model to distinguish highly confusing scenes. Exper-
iments on two datasets show the effectiveness of our method.
Code can be found at https://github.com/minghangz/cnm.

Introduction
Video moment localization is an important yet chal-
lenging task with potential applications in video surveil-
lance (Collins et al. 2000), robot manipulation (Kemp,
Edsinger, and Torres-Jara 2007), etc. The goal is to local-
ize temporally a video segment (i.e., start and end time)
that best corresponds to a query sentence from untrimmed
videos. Fully supervised video moment localization has
witnessed remarkable progress recently (Zhao et al. 2021;
Wang et al. 2021a; Zhou et al. 2021). However, annotat-
ing the ground truth temporal boundary for each query sen-
tence is labor-intensive and time-consuming, which under-
mines fully supervised approaches in real-world large-scale
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Figure 1: (a) Existing methods focus on distinguishing
matched and unmatched video-query pairs (collected from
different videos), while neglecting the matching level of dif-
ferent segments within one video. (b) We attach importance
to mine positive and negative samples within the same video.
We predict a learnable positive sample and consider the seg-
ments outside the positive sample as the easy negative sam-
ple, and the whole video as the hard negative sample.

scenarios. Therefore the weakly supervised setting, where
only video-level descriptions are available during training,
is more practical and draws increasing attention from the
community.

However, existing weakly supervised solutions (Mithun,
Paul, and Roy-Chowdhury 2019; Gao et al. 2019; Lin et al.
2020; Ma et al. 2020; Huang et al. 2021) have two limita-
tions: Firstly, given a specific query, they mainly focus on
distinguishing different videos by calculating the semantic
consistency between the video and the query while neglect-
ing the matching level of different video segments within
one video. Specifically, as shown in Figure 1(a), most exist-



ing multi-instance learning (MIL) based solutions learn the
visual-text alignment in the video level by maximizing the
matching scores of the paired sentences and videos while
suppressing that of the unpaired ones. Reconstruction-based
solutions (Lin et al. 2020; Song et al. 2020) solve this task
through joint learning with the reconstruction mechanism,
assuming that the video segment that best matches the query
should best reconstruct the entire query. However, for all of
them, given a specific query, all the negative samples are
collected from the other videos, which is not optimal as it
neglects the fact that the mismatched segments contained
in the same video (as shown in Figure 1(b)) is often much
harder to distinguish in the activity temporal localization
setup due to similar background and video style. Secondly,
the existing proposal generation procedure is independent
of the video and query sentence, which is less informative
and inefficient. The existing dominant proposal generation
procedures are mainly based on sliding windows, which can
not be dynamically adapted for different videos. They pool
the frame features within the proposal, ignoring the inherent
temporal structure of an event (i.e., the beginning, climax,
and ending), and may derive semantically irrelevant visual-
text relationships which are less generalizable. Moreover, to
keep a high recall rate, a large number of dense proposals
are required for long videos, which leads to an increase in
computational complexity.

To address the above limitations, we introduce a novel
weakly supervised method for activity temporal localization
by dynamically generating informative proposals and min-
ing hard negative samples within the same video for train-
ing. We call it Contrastive Negative sample Mining (CNM).
Firstly, to enable deeper coupling between the proposal gen-
eration procedure and the video-level supervision, we pro-
pose to generate a learnable Gaussian mask for each video,
highlighting a video segment most relevant to the query,
which serves as the positive sample. It is worth noting that
our Gaussian mask can represent the temporal structure of an
event and can be learned end-to-end. Secondly, to mine the
negative samples within the video, we treat the video seg-
ments that are not highlighted by Gaussian mask (marked
by shaded orange segments in Figure 1(b)) as easy nega-
tive samples. The whole video also serves as a hard negative
sample as it often contains a lot of redundant information.
We propose an Intra-Video Contrastive (IVC) Loss to en-
sure that the similarity with the query is sorted from large to
small as positive, hard negative, and easy negative samples.
By incorporating all of them into the training pipeline, we
can learn a temporal-sensitive visual embedding for tempo-
ral localization and boost the performance.

To sum up, the main contributions of our work are:

• We propose to generate a Gaussian mask as a proposal,
which can represent the temporal structure of an event
and can be learned by the network.

• In contrast to collecting negative samples from differ-
ent videos, we propose to mine the hard and easy neg-
atives within the same video and train the system with
Intra-Video Contrastive loss. Training with such a nega-
tive mining scheme makes our network capable of distin-

guishing highly confusing scenes.
• Experiments on the ActivityNet Captions (Caba Heilbron

et al. 2015) and Charades-STA (Gao et al. 2017) datasets
demonstrate the effectiveness of our method in weakly
supervised video moment localization.

Related Work
Fully supervised video moment localization. In the fully
supervised setting, the annotations of precise start and end
timestamps for each video and query pair are available dur-
ing training. The method mentioned in (Gao et al. 2017)
uses a fully-connected layer to join the sentence and video
feature together. The 2D Temporal Adjacent Networks (2D-
TAN) (Zhang et al. 2020a) takes advantage of the feature
of frames nearby. In addition, Boundary Proposal Net (BP-
Net) (Xiao et al. 2021) fuses the generated segment-level
feature and the query feature through multi-model fusion.
In the work of (Rodriguez-Opazo et al. 2020), it constructs
the Spatio-Temporal Graph, finding the relationship between
object and human nodes. Multi-stage Aggregated Trans-
former Network (MSA) (Zhang et al. 2021) tires to utilize
the feature of not only the start and end timestamps, but also
the middle of the frame. The method proposed in (Zhou
et al. 2021) uses the K-means algorithm to inference. Dual
Path Interaction Network (DPIN) (Wang et al. 2020) and
Structured Multi-Level Interaction Network (SMIN) (Wang
et al. 2021a) build structured multi-level interaction mod-
ule to optimize the use of the logic relationship between
the query and the segment. However, such fully supervised
methods need a huge amount of time and labor for annota-
tion, limiting their scalability and practicability.
Weakly supervised video moment localization. Compared
with the supervised setting, only video and query pairs
are given in the weakly supervised setting. Firstly, some
methods like the weakly supervised Semantic Completion
Network (SCN) (Lin et al. 2020) introduce the recon-
struction mechanism, asserting that a video segment paired
with the query could reconstruct the sentence better. How-
ever, those reconstruction-based methods ignore the infor-
mation from unmatched videos and queries for contrastive
learning. Further, other works (Yang et al. 2021; Huang
et al. 2021; Mithun, Paul, and Roy-Chowdhury 2019) uti-
lize the Multi-Instance Learning (MIL) method, consider
non-aligned video-query pairs from other videos as neg-
ative samples, and train the model to distinguish them
from aligned ones through specially designed loss functions.
However, to those MIL-based methods, their negative sam-
ples are not difficult enough for the model to distinguish,
making the model unable to effectively distinguish highly
confusing scenes within the video, because the contents of
different videos are visually distinct. In our method, we not
only use the reconstruction mechanism but also use nega-
tive samples for contrastive learning, and the SCN method
functions as our baseline. We collect the easy negative sam-
ple outside the positive sample within the same video, and
consider the whole video as the hard negative sample, thus
adding difficulty during training, which enables our network
to distinguish highly confusing scenes.



Secondly, the methods mentioned in (Mithun, Paul, and
Roy-Chowdhury 2019; Chen et al. 2020; Huang et al. 2021)
all use sliding windows to generate proposals. However,
the proposals generated by these methods are not related
to the content of the video. During training, these mod-
els would generate a large number of redundant proposals
and use Non-Maximum Suppression (NMS) (Neubeck and
Van Gool 2006) for post-processing, which involves heavy
computational cost. In our method, we introduce the learn-
able Gaussian masks to help us generate positive samples,
saving the labor of generating a large number of proposals
through the sliding windows.

Approach
The overall framework of CNM is illustrated in Fig. 2(a). It
consists of a mask generator and a mask conditioned recon-
structor. In the mask generator, we fuse the multi-modal in-
formation of video and language to predict a Gaussian mask,
highlighting a video segment most semantically relevant to
the query, which serves as the positive sample. The Gaus-
sian mask can be viewed as a high-quality content-based
temporal proposal that can be learned end-to-end. To enable
the model to distinguish highly confusing scenes, we mine
negative samples within the same video. We treat the video
segments that are not highlighted by the Gaussian mask as
easy negative samples. Since the entire video contains a lot
of redundant information, we also treat it as a hard nega-
tive sample. In the mask conditioned reconstructor, we use
the reconstruction performance as a measurement of seman-
tic similarity of the query, assuming that the segment that
perfectly matches the query can better reconstruct the en-
tire query. To make our reconstructor differentiable to the
mask, we design the mask conditioned attention in Fig. 2(b),
which collects contextual information within the video seg-
ment highlighted by the mask and uses the fused multi-
modal information to reconstruct the query. Our mask con-
ditioned attention weights the attention map by the values
in the Gaussian mask, which prevents the leakage of frame
features outside the mask. Finally, we optimize our mask
conditioned reconstructor with the reconstruction loss Lrec

for a better reconstruction, and optimize the mask generator
with the Intra-Video Contrastive loss LIV C by requiring the
reconstruction results of the positive sample, hard negative
sample, and easy negative sample are from good to bad.

Mask Generator
To generate high-quality and content-based proposals, our
mask generator fuses information from two modalities of
vision and language and predicts a Gaussian mask as our
positive sample. Different from previous works, which use
sliding windows to generate proposals, our Gaussian mask
is learnable and can characterize the inherent temporal struc-
ture of events (begining, climax, and ending). To enable our
model to distinguish highly confusing scenes, we mine nega-
tive samples within the same video: the video frames outside
the Gaussian mask are regarded as easy negative samples,
and the whole video, which contains a lot of irrelevant re-
dundant information, is regarded as a hard negative sample.

Feature Extraction. We first encode the videos and
queries into feature vectors. Specifically, each word of the
query is embedded using GloVe (Pennington, Socher, and
Manning 2014) and the query is represented as W =
{w1, w2, ..., wM} ∈ RM×DW , where M is the number of
words and DW is the word feature dimension. The video is
sampled as images at a fixed frame rate, and each image is
independently encoded by Pre-trained vision backbone net-
works. The video is represented as V = {v1, v2, ..., vN} ∈
RN×DV , where N is the number of video frames and DV is
the video feature dimension. During training, the word em-
bedding and vision backbone networks are frozen.

Mask Generation. As an event usually includes a be-
ginning, a climax and an ending, we propose to use the
Gaussian mask as the proposal to characterize the inherent
temporal structure of events. Because transformer (Vaswani
et al. 2017) has achieved great success in sequence analy-
sis, we use it to handle the multi-modal interaction of video
sequence and text sequence, and obtain the fused features
H = {h1, h2, ..., hN} that incorporate semantic and vision
information:

H = D(V,E(W )) ∈ RN×DH (1)

where E(·) is the transformer encoder, D(·) is the trans-
former decoder, DH is the hidden feature dimension. Since
hN combines all the frame and word features, we predict our
Gaussian center c and width w through hN :

c = Sigmoid(FC(hN )) ∈ R (2)

w = Sigmoid(FC(hN )) ∈ R (3)
where FC(·) denotes a single layer fully connected network.
The video segment with center c and width w is our positive
sample, and the corresponding positive Gaussian mask mp

is formulated as:

mp
i = exp(−α(i/N − c)2

w2
), i = 1, ..., N (4)

where mp
i is the weight of the i-th video frame in the Gaus-

sian mask, and α is a hyperparameter that controls the vari-
ance of the Gaussian function.

Negtive Sample Mining. To enable our model to distin-
guish highly confusing scenes, we mine negative samples
within the same video. Those negative samples inside the
video are what the model needs to distinguish during infer-
ence. Compared with other methods that simply use other
unmatched videos as negative samples, our negative samples
can provide richer information for the model.

Firstly, we regard the frame suppressed by mp as an easy
negative sample me, expressed in the form of the mask as:

me = 1−mp ∈ RN (5)

The easy negative sample is composed of frames in the video
that are not related to the query, but those frames may be
confusing because they have similar background and seman-
tics to the positive sample. Training the model to distinguish
the easy negative sample from the positive sample can im-
prove the performance in highly confusing scenes.

Secondly, in most cases, the entire video can also be re-
garded as a negative example, because it contains a lot of
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Figure 2: The framework of our method in weakly supervised video moment localization. In Fig. 2(a), the mask conditioned
generator fuses the information from the video and query and predicts a Gaussian mask, which highlights our positive sample.
The video segments not highlighted by the Gaussian mask are considered as easy negative samples, and the whole video serves
as the hard negative sample. The mask conditioned reconstructor uses the reconstruction results as a measurement for the
semantic relevance between the query and positive and negative samples. We optimize our mask conditioned reconstructor with
the reconstruction loss Lrec for a better reconstruction, and optimize the mask generator with the Intra-Video Contrastive loss
LIV C by requiring the reconstruction results of the positive sample, hard negative sample, and easy negative sample are from
good to bad. In Fig. 2(b), to keep our reconstructor differentiable to the mask, we introduce the mask conditioned attention,
which weights the attention map by the mask and collects contextual information within the frames highlighted by the mask.

irrelevant redundant information that has nothing to do with
the query. Thus, we regard the entire video as a hard negative
sample mh, denoted as:

mh = [1, 1, ..., 1] ∈ RN (6)

The hard negative sample is composed of the positive sam-
ple as well as a lot of irrelevant video frames and is more
difficult for the model to distinguish. Training the model to
distinguish the hard negative sample from the positive sam-
ple can help the model to locate more accurately and prevent
the model from outputting longer predictions that include
the ground truth.

Since the hard negative sample contains the positive sam-
ple as well as a lot of irrelevant redundant information and
the easy negative sample does not contain any correct seg-
ment, the semantic relativity of the three samples and the
query should satisfy:

R(mp,W ) > R(mh,W ) > R(me,W ) (7)

where R(·) is a function to evaluate the relevance of the
query W and the video segment represented by the mask
m, which will be discussed in the following section.

Mask Conditioned Reconstructor
Inspired by SCN, our mask conditioned reconstructor recon-
structs the original query conditioned on arbitrary sample
masks, the results of which serve as a measurement of the se-
mantic similarity between positive/negative samples and the
query. To keep our reconstructor differentiable to the mask,

we introduce the mask conditioned attention, which weights
the attention map by the mask and collects contextual in-
formation within the frames highlighted by the mask. Our
reconstructor uses the standard transformer structure and re-
places the traditional attention with our mask conditioned at-
tention. To optimize our generated mask end-to-end, we de-
sign the Intra-Video Contrastive loss LIV C which requires
the reconstruction results of the positive sample, hard nega-
tive sample, and easy negative sample are from good to bad.
To optimize our mask conditioned reconstructor, we use the
reconstruction loss Lrec to minimize the cross-entropy loss
of the reconstructed query and the original query.

Mask Conditioned Attention. Our reconstructor uses the
standard transformer structure to perform multi-modal inter-
action. To keep the reconstructor differentiable to the mask,
we introduce the mask conditioned attention in Fig. 2(b).
We replace the conventional attention mechanism (Vaswani
et al. 2017) in the transformer with our mask conditioned
attention and keep other components unchanged. Our mask
conditioned reconstructor includes an encoder Em(·) and a
decoder Dm(·), which can handle arbitrary mask as input
and limit the attention to the frames highlighted by the mask.

The encoder Em(·) takes the mask m ∈ RN and vision
features V ∈ RN×DV as inputs, and exchange information
within the frame features highlighted by the mask. We first
project V to the attention queries Qa ∈ RN×DH , keys Ka ∈
RN×DH and values Va ∈ RN×DH with a fully connected
layer. Then we calculate the similarity between Qa and Ka

and obtain the attention map A = QaKa√
DH

∈ RN×N . To limit



the attention to the frames highlighted by the mask m, we
multiply m on each row of A. After a row-wise Softmax
operation, the attention map is multiplied by Va to output
the aggregated context information:

Em(V,m) = Softmax(A⊗m)Va ∈ RN×DH (8)

where ⊗ means that m will be multiplied to each row of A,
and the Softmax operation is applied in each row. The de-
coder Dm(·) takes the mask m, the query features W , and
the outputs of Em(·) as inputs, and collects contextual in-
formation for each word feature within the frame features
highlighted by the mask. The calculation of Dm(·) is simi-
lar to that of Em(·) except that the attention queries Qa are
projected from the query W , and the keys Ka and values Va

are projected from the outputs of Em(·).
Mask Conditioned Semantic Completion. To measure

the semantic relevance of positive and negative samples to
the query, we use our mask conditioned reconstructor to re-
construct the query conditioned on the frames highlighted
by the mask, assuming that the frames that perfectly match
the query can better reconstruct the entire query.

Following SCN, we randomly replace 1/3 of the words
in the original query with a specific symbol, where nouns,
verbs, and adjectives have a higher probability of being re-
placed. We denote Ŵ as the masked query embedded us-
ing GloVe (Pennington, Socher, and Manning 2014). Then
we use our mask conditioned attention to obtain the cross-
modal semantic representation Hp conditioned on the posi-
tive sample mask mp:

Hp = Dm(Ŵ , Em(V,mp),mp) ∈ RM×DH (9)

Then, a single fully connected layer is applied to Hp and
outputs the probability distribution P p of the next word on
the vocabulary conditioned on the positive mask:

P p(w̃i+1|V, Ŵ1:i) = Softmax(FC(Hp)) ∈ RM×Nw (10)

where FC(·) is a fully connected layer, and Nw is the vocab-
ulary size. Then we use the cross-entropy loss to calculate
the difference between P p and the real distribution:

Lp
ce = −

M−1∑
i=1

logP p(wi+1|V, Ŵ1:i) (11)

Similarly, we can get Le
ce and Lh

ce by replacing mp with
me and mh respectively. Because only the positive sample
and the entire video (hard negative sample) contain the seg-
ment related to the query, only they can reconstruct the query
in principle. So only the Lp

ce and Lh
ce will participate in the

optimization of the mask conditioned reconstructor. The fi-
nal reconstruction loss Lrec is formulated as:

Lrec = Lp
ce + Lh

ce (12)

Intra-Video Contrastive. To optimize our mask genera-
tor, we train our model to distinguish the positive and neg-
ative samples. As shown in (7), the semantic similarity be-
tween the query and the positive, hard negative, and easy

negative samples should satisfy a certain relationship. Sim-
ilar to margin ranking loss (Balntas et al. 2016), our Intra-
Video Contrastive loss LIV C can be formulated as:

LIV C =max(Lp
ce − Lh

ce + β1, 0)+

max(Lp
ce − Le

ce + β2, 0)
(13)

where β1 and β2 are hyperparameters satisfying β1 < β2.
LIV C requires that the loss of the positive sample is at least
β1 smaller than the loss of the hard negative sample, and at
least β2 smaller than the loss of the easy negative sample.

Model Training and Inference
In this section, we describe the loss function we optimize
to train our network and our inference process. Our net-
work mainly includes two parts of loss: the reconstruction
loss Lrec is used to optimize the mask conditioned recon-
structor, which encourages the network to accurately predict
the description related to the given mask; the Intra-Video
Contrastive loss LIV C is used to optimize the mask genera-
tor, which encourages the network to choose an appropriate
Gaussian mask to make the positive and negative samples
more distinguishable.

Training. To require the reconstructor to try its best to
reconstruct the query from a video segment regardless of
whether it is positive or negative, the IVC loss is only used to
train the mask generator, and the reconstruction loss is only
used to train the mask conditioned reconstructor. Specifi-
cally, we first update the reconstructor by Lrec, while freez-
ing the mask generator; Then we update the mask generator
by LIV C while freezing the reconstructor:

θ̂1 = argmin
θ1

LIV C(V,W |θ1, θ2)

θ̂2 = argmin
θ2

Lrec(V,W |θ1, θ2)
(14)

where θ1 is the parameters of the mask generator, and θ2 is
the parameters of the mask conditioned reconstructor. This
design can avoid a trivial solution where the reconstructor
always gives low scores to the predicted negative samples,
which will easily accumulate errors at early training.

Inference. The inference process of our model is very
simple. Through Equation (2) and (3), we can obtain the
center c and width w of our predicted Gaussian mask. The
temporal boundary (s, e) can be obtained by:

s = max(c− w/2, 0) ∗N
e = min(c+ w/2, 1) ∗N (15)

Since there is no need to use sliding windows to gener-
ate dense proposals, our model abandons complex post-
processing operations such as Non-Maximum Suppression
(NMS) (Neubeck and Van Gool 2006).

Experiments
Datasets
To test the effectiveness of our proposed method, we per-
form experiments on two publicly available datasets, Activ-
ityNet Captions (Caba Heilbron et al. 2015; Krishna et al.
2017) and Charades-STA (Gao et al. 2017), respectively.



ActivityNet Captions. ActivityNet Captions dataset is re-
leased in (Krishna et al. 2017), which is made up of
19,290 videos with 37,417/17,505/17,031 moment of inter-
ests (MoIs) in the train/val 1/val 2 split. The length of the
query, on average, is 14 words. The length of the MoIs
and untrimmed videos are 36.2 and 117.6 seconds respec-
tively. We adopt standard splits, and follow the common
practice of the previous works SCN (Lin et al. 2020) and
RTBPN (Zhang et al. 2020b), using the val 1 split for vali-
dation, val 2 split for testing.
Charades-STA. Charades-STA (Gao et al. 2017) dataset
contains 12,408/3,720 video-query pairs. For training, 5,338
videos are available, while 1,334 videos can be used for test-
ing. The query sentences are comprised of 7.2 words on av-
erage, while the average duration of target video moments
and untrimmed videos are 8.1 and 30.6 seconds respectively,
which is much shorter compared with those in the Activi-
tyNet Captions dataset. We report our results on the test split.

Evaluation Metric
Following the previous work (Lin et al. 2020), we choose
the result of ‘IoU=m’ as our evaluation metric. To be spec-
ified, this metric evaluates the percentage of predicted mo-
ments that have the temporal Intersection over Union (IoU)
larger than the threshold m, and m is set to {0.1, 0.3, 0.5}
on the ActivityNet Captions dataset, and {0.3, 0.5, 0.7} on
the Charades-STA dataset respectively.

Implementation Details
Data Preprocessing. For each video, we pre-extract its vi-
sual features using the CLIP (Radford et al. 2021) for Ac-
tivityNet Captions and using I3D (Carreira and Zisserman
2017) for Charades-STA. We use the pre-trained GloVe
(Pennington, Socher, and Manning 2014) word2vec for each
word token to extract word embeddings. We set the maxi-
mum description length to 20, set the maximum number of
frames to 200, and the vocabulary size for the ActivityNet
Caption and Charades-STA is 8,000 and 1,111 respectively.
Model Settings. For the transformer in the mask genera-
tor and mask conditioned reconstructor, the dimension of
their hidden state is 256, the number of attention heads is
4, and the number of layers is 3. During training, we use
Adam (Ellouz et al. 1974) optimizer with the learning rate
set to 0.0004. The hyperparameters β1, β2 are set to 0.1,
0.15 respectively for both datasets. α is set to 5 for Activi-
tyNet captions and 5.5 for Charades-STA. Due to the shorter
ground truth length on Charades-STA, we limit the maxi-
mum width of the prediction to 0.45 (multiplied by Eq. (3)).

Comparisons to the State-Of-The-Art
Tab. 1 and 2 compare CNM with previous works of weakly
supervised video moment localization.

1Directly comparing CRM with other methods (include our
CNM) is unfair, because CRM requires an additional paragraph
description annotation (multiple events described sequentially) per
video in training, while we do not.

Method Recall
IoU=0.1 IoU=0.3 IoU=0.5

Random (Lin et al. 2020) 38.23 18.64 7.63
WS-DEC (Duan et al. 2018) 62.71 41.98 23.34
EC-SL (Chen and Jiang 2021) 68.48 44.29 24.16
MARN (Song et al. 2020) - 47.01 29.95
SCN (Lin et al. 2020) 71.48 47.23 29.22
RTBPN (Zhang et al. 2020b) 73.73 49.77 29.63
WSTG (Chen et al. 2020) 74.2 44.3 23.6
WSLLN (Gao et al. 2019) 75.4 42.8 22.7
LCNet (Yang et al. 2021) 78.58 48.49 26.33
WSTAN (Wang et al. 2021b) 79.78 52.45 30.01
CRM 1 (Huang et al. 2021) 81.61 55.26 32.19

CNM (ours) 78.13 55.68 33.33

Table 1: Evaluation Results on the ActivityNet Captions
Dataset (m ∈ {0.1, 0.3, 0.5}). The numbers in bold are the
best result, and the numbers underlined are the second best.

Method Recall
IoU=0.3 IoU=0.5 IoU=0.7

Random (Lin et al. 2020) 20.12 8.61 3.39
TGA (Mithun, Paul, and Roy-
Chowdhury 2019)

32.14 19.94 8.84

WSTG (Chen et al. 2020) 39.8 27.3 12.9
SCN (Lin et al. 2020) 42.96 23.58 9.97
WSTAN (Wang et al. 2021b) 43.39 29.35 12.28
VLANet (Ma et al. 2020) 45.24 31.83 14.17
LoGAN (Tan et al. 2021) 48.04 31.74 13.71
MARN (Song et al. 2020) 48.55 31.94 14.81
CRM 1 (Huang et al. 2021) 53.66 34.76 16.37
LCNet (Yang et al. 2021) 59.60 39.19 18.87
RTBPN (Zhang et al. 2020b) 60.04 32.36 13.24

CNM (ours) 60.04 35.15 14.95

Table 2: Evaluation Results on the Charades-STA Dataset
(m ∈ {0.3, 0.5, 0.7}). The numbers in bold are the best re-
sult, and the numbers underlined are the second best.

We observe: (1) Our method surpasses the state-of-the-art
methods for IoU=0.3 and IoU=0.5 on the ActivityNet Cap-
tions dataset. (2) On the ActivityNet Captions dataset with
IoU=0.1, the result of our method is slightly lower than the
CRM. However, CRM requires a paragraph description an-
notation (multiple events described sequentially) per video
in training, while we do not. Paragraph-level descriptions
provide additional event timing information but are not al-
ways available in practical applications. Thus, our approach
addresses a more practical problem, i.e., uses less annota-
tion information in training and achieves comparable perfor-
mance to CRM. (3) On the Charades-STA dataset, our CNM
achieves SOTA when IoU=0.3. However, there are still some
gaps of CNM with SOTA when IoU=0.5 and 0.7. One pos-
sible reason is that influenced by reconstruction loss, our
model tends to output longer predictions because it is more
likely to contain the correct information for a better recon-
struction.



Method Recall
IoU=0.1 IoU=0.3 IoU=0.5 mIoU

Full Model 78.13 55.68 33.33 37.14
w/o. Mask 79.35 47.71 26.98 34.73

Table 3: The effectiveness of masks generator

Hard Easy Recall
IoU=0.1 IoU=0.3 IoU=0.5 mIoU

! ! 78.13 55.68 33.33 37.14
% ! 80.60 55.67 31.40 36.79
! % 80.99 55.19 30.94 36.95
% % 62.27 40.26 24.93 28.55

Table 4: The effect of intra-video negative samples mining.

Ablation Study
We conduct ablation studies on the ActivityNet Caption
dataset, and additionally report the results of mean Intersec-
tion over Union (mIoU).

Effect of Mask Generator. As Tab. 3 shows, we evaluate
the effectiveness of our mask generator. We disable our mask
generator during training. Instead, we use sliding windows
and policy gradient method (Lin et al. 2020), just as the SCN
does. We can see that the model with the mask generator per-
forms better, especially when IoU=0.3 and IoU=0.5, reveal-
ing the fact that the design of the mask generator plays an
important role in improving the performance of our method.
It is because our Gaussian masks can be learned from end to
end, and are more closely related to the content of the video.
In addition, our mask generator allows us to abandon dense
proposals, greatly improving the speed of inference. On one
NVIDIA TITAN X, we can achieve the speed of 55.8ms per
video on the ActivityNet Captions dataset, while the speed
of SCN is 124ms per video.

Effect of Intra-Video Negative Samples Mining. As
Tab. 4 shows, we evaluate the effectiveness of our negative
samples. We compare the output results of the model without
easy and hard negative samples. We can see that the model
with both the easy and hard negative samples achieves the
best result. This demonstrates that both easy and hard nega-
tive samples are essential for our training. It is because our
negative samples are harder for the model to learn, providing
stronger supervision signals.

Effect of Training Strategy. As Tab. 5 shows, we evalu-
ate the effectiveness of our training strategy. In the first row,
CNM uses LIV C to optimize the mask generator, and uses
Lrec to optimize the mask conditioned reconstructor respec-
tively. In the second row, we show the results of using Lrec

and LIV C to jointly train the entire model. We can see that
CNM is better in the three evaluation metrics, which proves
that Lrec and LIV C work best when used in the mask condi-
tioned reconstructor and the mask generator separately. This
design can avoid a trivial solution that the reconstructor al-
ways gives low scores to the predicted negative samples,

Strategy Recall
IoU=0.1 IoU=0.3 IoU=0.5 mIoU

Independently 78.13 55.68 33.33 37.14
Jointly 63.59 43.80 24.50 28.96

Table 5: The effectiveness of training strategy

Query: She laughs and continues to brush her teeth.

Query: He blows into the harmonica and starts to play it.
(a)

(b)
Query: Once complete, she jumps up and down, happy that her 
jump was successful as the crowd begins to cheer for her.

(c)

GT15.18s 70.59s
SCN2.12s 63.88s

Ours16.59s 70.59s

GT37.37s 162.22s
SCN18.66s 160.60s

Ours37.31s 162.22s

GT15.57s 16.93s
SCN0.00s 14.81s

Ours3.72s 16.93s

Figure 3: Qualitative examples on ActivityNet Captions.

which will easily accumulate errors at early training.

Qualitative Results
Fig. 3 shows some qualitative examples from the Activi-
tyNet Captions dataset. Each example provides the query,
and the temporal boundaries of ground truth (‘GT’), the
SCN method, and ours respectively. It can be observed in
Fig. 3(a) and (b) that the temporal boundaries of the predic-
tion made by our method are more accurate than the SCN’s,
proving that our negative samples are beneficial for mask
reconstruction during training. Fig. 3(c) demonstrates that
our methods can still achieve better results when the SCN
method goes wrong. In addition, Fig. 3(c) shows that our
method may tend to output longer predictions because it is
more likely to contain the correct information for a better
reconstruction.

Conclusion
In this work, we propose a novel weakly supervised video
moment localization method, called Contrastive Negative
sample Mining (CNM). Our CNM generates a learnable
Gaussian mask as the positive sample, which ensures the
balance between recall rate and efficiency. Our CNM also
proposes a novel method to mine the hard and easy nega-
tive samples within the same video, which enables CNM to
distinguish highly confusing scenes. Extensive experiments
and ablation studies on ActivityNet Captions and Charades-
STA dataset demonstrate the advantages of CNM.
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