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Abstract

Unsupervised domain Adaptation (UDA) aims to learn and
transfer generalized features from a labelled source domain
to a target domain without any annotations. Existing methods
only aligning high-level representation but without exploiting
the complex multi-class structure and local spatial structure.
This is problematic as 1) the model is prone to negative trans-
fer when the features from different classes are misaligned; 2)
missing the local spatial structure poses a major obstacle in
performing the fine-grained feature alignment. In this paper,
we integrate the valuable information conveyed in classifier
prediction and local feature maps into global feature repre-
sentation and then perform a single mini-max game to make
it domain invariant. In this way, the domain-invariant feature
not only describes the holistic representation of the original
image but also preserves mode-structure and fine-grained spa-
tial structural information. The feature integration is achieved
by estimating and maximizing the mutual information (MI)
among the global feature, local feature and classifier predic-
tion simultaneously. As the MI is hard to measure directly
in high-dimension spaces, we adopt a new objective function
that implicitly maximizes the MI via an effective sampling
strategy and a discriminator design. Our STructure-Aware
Feature Fusion (STAFF) network achieves the state-of-the-art
performances in various UDA datasets.

Introduction

The success of deep neural network relies on a massive
amount of labeled training data. However the learned rep-
resentation is very sensitive to the input perturbations and
dataset biases, that is, deep networks may easily fail to gen-
eralize to new dataset or environment. In practice, manual
labeling of such sufficient training data for every new dataset
is often prohibitive or impossible to collect. Unsupervised
domain adaptation (UDA) aims to solve this problem by
transferring a deep network from a source domain where
sufficient labeled training data is available to a target domain
where only unlabeled data is available.

The main technical difficulty of UDA is how to address
the domain shift and formally reduce the distribution discrep-
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ancy across different domains. Although various distribution
divergence measurements have been investigated to estimate
and reduce domain discrepancy, these methods only focus on
aligning high-level representations, e.g. the fully connected
(FC) layer features, but without exploiting the complex multi-
mode structure and local geometric spatial structures.

We argue that to solve UDA problem, it is far from suffi-
cient to match only the global feature distribution, because
of the following reasons: 1) The data distribution usually
embody complex multi-mode structures, reflecting either the
class boundaries in supervised learning or the cluster bound-
aries in unsupervised learning. Only matching marginal dis-
tribution without exploiting the multi-mode structure may be
prone to negative transfer, especially when the corresponding
mode of the distributions across domains are falsely aligned.
There is no guarantee that samples from different domains
with the same class label will be mapped nearby in the fea-
ture space. As a result, the discriminative structure between
classes could be mixed up thus leading to a poor performance
for the target domain. 2) Only matching global feature ig-
nores the local geometric spatial structures. However, the
domain discrepancy may appear at the start from the early
convolutional layers, which makes any adjustment purely at
the tail of the network less effective. In addition, the lack of
local features for different regions, pose a major obstacle in
performing a fine-grained feature alignment.

An intuitive solution for the two aforementioned issues
is that performing feature alignments via multiple adversar-
ial training at the different level of representation, including
local-, global-representation and classifier predictions (mode
informative). However, this is unrealistic and suffer from
unstable numerical optimization due to the easy conflict gra-
dients from a set of minimax problems coupled together, not
to say the inefficient design and heavy memory consumption
of multiple discriminator networks. In this paper, rather than
performing multiple minimax problems simultaneously, we
address the challenges from another perspective by formal-
izing a STructure-Aware Feature Fusion (STAFF) network.
More specifically, we first integrate the informative content
of local feature (fine-grained structural information) and clas-
sifier prediction (conveys mode structure) into the global
feature and then perform a single minimax optimization to
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Figure 1: Overall network architecture of our proposed
STructure-Aware Feature Fusion (STAFF) Network. First,
in the source domain, the feature encoder E, Feature Trans-
former F and the content classifier C are trained to extract
discriminative features from images Xs labeled by Ys by min-
imizing the cross entropy loss LC . Second, we integrate the
classifier prediction (mode structure) and local feature maps
(spatial structure) into the global feature via using global and
local MI discriminators MG and ML to maximize the mu-
tual information MI among them. Finally, to learn domain-
invariant fused features, the domain classifier D, the encoder
E and the feature transformer F play an adversarial game,
where D tries to discriminate whether the features are from
target or source domain, while the encoder E and F tries to
confuse D. The learned domain invariant feature not only
describes the holistic representation of the original image but
also preserves fine-grained spatial structural and discrimina-
tive mode structure.

make the global feature domain invariant. To the best of our
knowledge, no previous work is able to integrate both the
local feature and classifier prediction in the single global
feature efficiently for adversarial learning. In addition, no
proper loss function has been designed to integrate such rela-
tionships in the optimization of an adaptation network.

So what is a good integration? Successful integration, in
this case, should be able to distill common part while ignor-
ing rest, that is the local-, global-representation and classifier
predictions should be predictive of the others with low un-
certainty. To achieve this goal, our STructure-Aware Feature
Fusion (STAFF) network tries to regularize the global rep-
resentation so that the mutual information (MI) between its
class predictions and its local feature maps can be maximized
simultaneously. Afterward, only performing one adversarial
training on this single global representations. In this way, the
learned domain invariant global feature not only describes
the holistic representation of the original image but also pre-
serves fine-grained structural information and keep mode
informative. As the mutual information between two variable
is known that hard to measure directly in high-dimension
spaces, we adopt a new objective function that implicitly
maximizes the MI via an encoder-discriminator architecture
and an effective sampling strategy. The overall framework of
STAFF is shown in Figure.1.

Our main contributions are summarized in the following:
1. We are the first to integrate the valuable information

conveys in classifier prediction and local feature maps into
the global feature representation and then perform a single ad-

versarial game. The learned domain invariant feature (global
feature) not only describes the holistic representation of the
original image but also preserves fine-grained structural in-
formation and mode informative.

2. A successful global feature integration is achieved by
maximizing the mutual information between its class predic-
tions and its local feature maps simultaneously. We adopt
a new objective function, mutual information discriminator
and sampling strategy to estimate and maximize the MI.

3. Our approach achieves the state-of-the-art performance
on the domain adaptation benchmarks, including hand-
written digit dataset, Office-31 dataset and Office-Home
dataset.

Related Work

Distribution Matching Methods in UDA

Deep features have been proved transferable, disentangled
and invariant of underlying different data variations (Long
et al. 2018). However, cross-domain discrepancy of repre-
sentations still exist and current deep adaptation networks
adopt variants of MMD (Long et al. 2015; Venkateswara et
al. 2017), the adversarial training strategy (Ganin et al. 2016;
Bousmalis et al. 2016; Liu, Breuel, and Kautz 2017; Chen et
al. 2018) or transportation plan modelling (Courty et al. 2017;
Chen et al. 2018; Damodaran et al. 2018) to measure and
reduce domain discrepancies.

A number of works were proposed to translate image styles
between domains directly, namely the pixel-level adaptation
(Bousmalis et al. 2016; Liu, Breuel, and Kautz 2017). Most
recent GAN based methods successfully explored to trans-
fer style from source to target domain and back again (Liu,
Breuel, and Kautz 2017; Russo et al. 2017), however these
pixel-level image translation methods require more investi-
gations when adapting domains with large discrepancy, for
example the office-home dataset (Venkateswara et al. 2017).

Multi-level Domain Alignment

It is challenging to reduce the multi-level feature discrepan-
cies in an effective yet efficient manner. Previous adaptation
networks have investigated either to utilize multiple networks
and loss functions or integrate multi-level feature into a uni-
fied one and constrain the feature learning using a single loss
function.

JAN (Long et al. 2016) may be the first to consider match-
ing the joint distribution of global feature and the label pre-
dictions using tensor product, however, JAN does not inte-
grate and adapt the local feature discrepancies. Most recently,
CDAN (Long et al. 2018) explored to integrate label predic-
tion and the global features using random projection matrix.
This is a very efficient procedure however it still does not
consider integrating the local feature structure. In addition,
no explicit loss function has been investigated to preserve the
information contents in the feature integration operation.

Another line of research adopt multi-level domain discrim-
inator networks (Zhang et al. 2018) or multiple loss functions
(Damodaran et al. 2018). Zhang et al. (Zhang et al. 2018)
first perform alignments on both local convolutional and the
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global feature using multiple domain discriminators but with-
out aligning the class predictions.

Damodaran et al. (Damodaran et al. 2018) proposed multi-
ple OT losses to match joint global feature and label distri-
butions, however, they failed to consider the local structure
information in the domain distribution alignment. To the best
of our knowledge, STAFF may be the first to integrate the
global feature, local structure and label prediction in one rep-
resentation using MI loss functions for adversarial training
and the domain discrepancy alignment.

Mutual Information Estimation

Estimating MI on the continuous and high-dimensional fea-
ture space is extremely difficult. However, it is also very
useful for unsupervised representation learning by maximiz-
ing the MI between input and output of the model, as being
widely used for independent component analysis(Hyvarinen
1999). Most recently, the pioneer work Mutual Information
Neural Estimation (Belghazi et al. 2018) explored to robustly
estimate the MI using neural networks and Deep Info Max
(DIM) (Hjelm et al. 2018) applied this method to learn a
meaningful representation for unsupervised classification. To
the best of our knowledge, we may be the first to explore
the MI maximization for UDA problem, especially for multi-
level feature integration and discrepancy alignment.

Model

The overall framework is illustrated in Figure 1, where arrows
indicate the forward propagation direction. STructure-Aware
Feature Fusion (STAFF) network is composed of the follow-
ing components, including the encoder E, feature transformer
F , the global and local Mutual Information Estimators MG

and ML, the content classifier C and the domain classifier
D.

Assuming the source image XS and the discrete con-
tent label YS are drawn from a source domain distribution
PS(X,Y ), as well as target images XT drawn from target
domain distribution PT (X) without label observations. Since
direct supervised learning on the target images is not possible,
UDA instead learns a content classifier C driven by source
labels only and then adapts the model to the target domain.

Specifically, the source image is first mapped by the en-
coder to the latent local representation, i.e., a set of feature
maps E(XS) ∈ R

M×M×C1 . Then the feature transformer
first performs a global pool over the spatial regions and then
transform the feature to its latent global feature representation
F (E(XS)) ∈ R

C2 . Afterwards, the content classifier works
cooperatively with the Encoder E and Feature transformer
F to minimize the content classification loss for source im-
ages LC , which is a conventional cross-entropy loss between
ground truth YS and prediction C(F (E(XS))):

min
E,F,C

LC . (1)

The general recipe to solve the UDA problem is to regular-
ize the learning of encoder and feature transformer, so as to
match the marginal distribution between P (XS) and P (XT ).
Most of the existing UDA approach makes the hypothesis
that: once the marginal distribution is matched, the source

content classifier can be applied to the target features for
label prediction. Under this hypothesis, we can formulate
the following adversarial training objective to minimize the
feature discrepancy:

max
E,F

min
D

LD. (2)

As can be seen, the encoder E, feature transformer F and
domain classifier D play an adversarial game on the domain
classification loss LD, where E and F tries to minimize the
cross-domain divergence so that D fails to correctly classify
which domain the sample comes from no matter how hard D
tries. Ideally, at the end of the competition, D can perform
no better than a random guess, which means the learned
global feature representation is domain invariant. To simplify
the notations, we denote l ∈ R

(M×M×C1), g ∈ R
C2 and

h ∈ R
C3 to represent the local convolution feature map

E(X), global feature F (E(X)) and the classifier prediction
C(F (E(X))) respectively.

However, as shown in the introduction section, the hypoth-
esis aforementioned is problematic due to two reasons and
the goal of this paper is to integrate multi-level features in
the global feature and align it only using single adversarial
training. More specifically, we made novel designs in global
and local MI discriminators MG and ML to achieve this goal.
Mathematical formally, we learn the parameters of E , F
and MG to maximize the mutual information between global
feature g and inductive classifier prediction h to make global
g is mode-aware as :

max
E,F,MG

MI(g, h). (3)

Meanwhile we want to maximize the mutual information
between global feature g and local feature l to make global g
preserves the useful local structure information as:

max
E,F,ML

MI(g, l). (4)

More details about the fundamentals of MI estimation,
training strategy of the MI discriminator MG and maximiz-
ing the MI between global feature and inductive classifier
prediction will be discussed in the next section. The training
strategy of local MI discriminators ML for maximizing MI
between global and local representation is discussed after-
wards. Finally, the overall optimization objective functions
are summarized.

Maximize MI between global representation and
classifier prediction

MI is a well-known unsupervised learning loss function, with
the aim of maintaining the information contents between
variable X and Y . As shown in Eq.(5), MI measures the
Kullback-Leibler (KL) divergence between the joint distribu-
tion P (X,Y ) and the product of their marginal distributions
P (X)P (Y ).

I(X,Y ) = KL(P (X,Y )||P (X)P (Y )) (5)
The MI is small when the two variables X and Y are sta-

tistically independent, while is large when two variables pre-
serve the same information content. Although the MI between
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two random variables is hard to measure directly in high-
dimension spaces, some recent studies (Belghazi et al. 2018;
Hjelm et al. 2018) proved that an implicit estimation of MI
can be achieved with an encoder-discriminator architecture.

We attempt to use the network design as shown in Fig-
ure. 2 to maximize the MI between the global feature g and
its associative classifier prediction h. More specifically, this
relies on a sampling strategy that draws positive and neg-
ative samples from the joint distribution P (g, h) and from
the marginal product P (g)P (h) respectively. In our case, the
positive samples (g1, h1) are the features of the same input,
while the negative samples (g1, h2) are obtained from differ-
ent inputs. That is, a set of n positive and negative pairs can
form a mini-batch X = {XP , XN}. Given g1, cooperatively
trained with F and C, the global MI discriminator MG aims
to distinguish whether the other input (h1 or h2) are from the
same input image or not.

The function of MG contains two operations: 1) to project
the classifier prediction h ∈ R

C3 to a vector ĥ ∈ R
C2 using

a linear transformation Wh ∈ R
C2×C3 ; 2) measure the simi-

larity between g and ĥ (with the same dimension to g) via a
dot product. Mathematical formally, the function MG can be
represented as

MG(x, y) = gTWhh (6)

Various objective functions can be used to maximize
MI(g, h). The simplest formulation as did in (Brakel and
Bengio 2017; Hjelm et al. 2018), adopting the standard bi-
nary cross-entropy (BCE) loss as shown in (7) where the
output of MG is activated by a sigmoid function.

EXP
[logσ(MG(g1, h1))] + EXN

[log(1− σ(MG(g1, h2)))]
(7)

where σ(z) = 1
1+e−z . Rather than optimizing exact KL diver-

gence as defined by MI, the BCE estimate a Jenson-Shannon
(JS) divergence instead. JS is more stable since it is always
defined, bounded by [0,1], symmetric and more smooth.

As an alternative, the work in (Oord, Li, and Vinyals 2018)
suggests that minimizing the Noise Contrasting Estimation
(NCE) Loss as shown in (8) is in fact maximizing a lower
bound of MI. Note that in this scenario, n samples within one
mini-batch contains 1 positive pair XP and (n− 1) negative
pairs XN . The work in (Oord, Li, and Vinyals 2018) has
shown that the lower bound becomes tighter as n becomes
larger. This loss can be regarded as the categorical cross-
entropy of classifying the positive sample correctly, with

e(Mg(g1,h1))

∑
h2∈X e(Mg(g1,h2)) being the prediction of the model.

−EX [log
e(MG(g1,h1))

∑
h2∈X e(MG(g1,h2))

] (8)

The third alternative is to directly optimize the MI with the
Mutual Information Neural Estimation (MINE) (Belghazi et
al. 2018) with the objective shown in (9):

EXP
[MG(g, h)] + EXN

[eMG(g,ĥ)] (9)

MINE explicitly computer the MI of continuous variables
by exploiting a lower bound based on the Donsker-Varadhan
representation of the KL divergence.
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Figure 2: Network design of maximizing the mutual infor-
mation between global feature g and its associative classifier
prediction h.
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Figure 3: Network design of maximizing the mutual infor-
mation between global features g and local features l. The
l1 ∈ R

(M×M×C1) and l2 ∈ R
(M×M×C1) are the local fea-

ture representation extracted from E for two different im-
ages, which contains some spatial structural information. The
global feature g1 ∈ R

C2 is encoded by the feature trans-
former F for input l1. (l1, g1) are drawn from the joint distri-
bution (positive) while (l1, g1) are drawn from the marginals
(negative). The function of the local MI discriminator ML is
shown in the red box. Both l1 and l2 first map to a space with
the C2 channels by 1× 1 convolution. We then take the dot
product between the feature at each location of the feature
map with the global feature representation.

All the aforementioned objectives are based on the dif-
ferent approximation of KL divergence between the joint
and product of marginal distributions as the definition of MI.
This paper is the first to introduce MI estimation into the
UDA problem, we will compare these objective functions
for MI optimization in our proposed network later in Section
Analysis.

Maximize MI between Global representation and
Local representation

In previous section, we have discussed that at least three
alternative objective functions can be utilized to implicitly
maximize the MI between the global representation and clas-
sifier prediction. In this section, we present how to maximize
the MI between global and local representations.

Our local MI maximization framework is shown in
Figure.3. First we encode the input to a feature map l ∈
R

(M×M×C1), represented as l = {l(i) }M2

i=1 preserving the
spatial structure information. After feed-forwarding l through
the feature transformer F and obtaining its corresponding
global features g, we can define our local MI estimator in (4)
as the average MI loss between the feature l(i) at the spatial
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location i with the global feature g:

MI(g, l) = 1

M2

M2∑

i=1

MI(g, l(i)). (10)

Therefore, we can take a similar encoder-discriminator
design and sampling strategy to maximize the MI(g, l) .
More specifically, we choose to sample (g1, l1) from the
joint distribution as the positive pair, and sample (g1, l2)
from the product of marginal distribution as the negative pair.
Intuitively, cooperatively trained with E and F, the local MI
discriminator ML aims to distinguish whether the other input
(l1 or l2) are from the same input image as g1 or not.

The operation of the local MI discriminator ML is slightly
different from the global one MG. The local feature map
is encoded using a 1 × 1 convolution network and the out-
put l̂ has C2 channels (i.e., same as the dimension of global
feature g), with C2 smaller than C1. We then take the dot
product between the feature at (ith) location l̂(i) with the
global feature representation g for calculating the prediction
of ML(g, l). To this point, all the aforementioned loss func-
tions (7)(8)(9) can be used to implicitly maximize MI(g, l)
by replacing the MG(g, h) by ML(g, l

(i)). It is worth noting
that because the same global representation is encouraged to
have high MI with all the patches, this favors encoding the
similar information shared across patches.

Optimization

This section present the complete objective of STAFF in (11).
The overall loss function is a min-max problem, including the
source domain classification loss LC , domain discriminator
loss LD, global MI losses MI(g, h) and local MI losses
MI(g, l). It is worth noting that MI(g, h) is parameterized
by F,C,MG, while MI(g, l) is parameterized by E,F,ML.
The hyper-parameter α, β, γ represent the weight of relevant
loss functions.

max
E,F,C,Ml,Mg

min
D

αLD − LC + βMI(g, h)

+
γ

M2

M2∑

i=1

MI(g, l(i)) (11)

Experiments and Results

We evaluate the proposed STAFF network with state-of-
the-art deep learning based unsupervised domain adaptation
methods. In this section, we first illustrate the datasets and
implementation details. Then we show extensive experimen-
tal results and analysis. Our STAFF works reasonably well on
all benchmarks, including Digit, Office-31 and Office-Home
dataset.

Experiment Setup and Implementation Detail

Digits: We investigate three digits datasets of varying diffi-
culties, including MNIST, USPS and the SVHN. We adopt
the train-test protocol of (Russo et al. 2017) for a fair com-
parison with four transfer tasks: MNIST →USPS (M→U),

Table 1: Recognition rates (%) of hand-written digit dataset.
Methods M-U U-M S-M M-S
SO 90.2 61.2 59.3 26.2
MMD (Long et al. 2015) 88.5 73.5 64.8 -
DANN(Ganin et al. 2016) 95.7 90.0 70.8 -
Self-Ensemble (French et al. 2018) 88.1 92.4 93.3 42.0
GentoAdapt(Sankarayanan et al. 2018) 95.3 90.8 92.4 -
UNIT (Liu, Breuel, and Kautz 2017) 95.9 93.5 90.5 -
SBADA-GAN(Russo et al. 2017) 97.6 95.0 76.1 61.1
CDAN (Long et al. 2018) 93.9 96.9 88.5 -
Deep-JDOT(Damodaran et al. 2018) 95.7 96.4 96.7 -
TPN(Pan et al. 2019) 92.1 94.1 93.0 –
STAFF (Ours) 98.3 98.1 97.7 65.8

USPS →MNIST (U→M), SVHN →MNIST, (S→M) and
MNIST →SVHN (M→S). All comparison network use a
variant of LeNet as the basis network, similar to the one used
in (Damodaran et al. 2018). The discriminator network is
composed of three FC layers with ReLU function (see details
in supplementary). We fix α = 1, β = 0.01, γ = 0.01 for
all experiments. We train our network from scratch use SGD
with momentum of 0.9, learning rate of 0.002 and batch size
of 128.

Office-31 and Office-Home: Office-31 is the most widely
used dataset for unsupervised domain adaptation. It comprise
4110 images from 31 classes collected from three distinct do-
mains: Amazon (A), Dslr (D), Webcam (W). Office-Home is
a more difficult dataset than Office-31. It comprise 15,500 im-
ages from 65 classes collected from four distinct domains: Art
(Ar), Clip (Cl), Product (Pr) and Real-World (Rw). We evalu-
ate all methods on all transfer tasks for these two datasets.

All comparison networks use a ResNet-50 (pretrained from
ImageNet) as base networks. We train domain discriminator
D, MI estimators MG, ML and classifier C from scratch.
Whatever module trained from scratch, its learning rate was
set to be 10 times that of the fine-tuning layers. We used
the following parameters α = 1, β = 0.1, γ = 0.05 for
all experiments. The SGD with 0.9 momentum is used and
the learning rate is annealed by up = u0(1 + ηp)−φ, where
p is the training progress changing from 0 to 1, and u0 =
0.01, η = 10, φ = 0.75 (Ganin et al. 2016). We used the
conventional three-layer FC in discrminator network for both
office-31 and office-home datasets.

Results and Comparisons

Digits: The results on Digit datasets of four adaptation tasks
are reported in Table 1, with baseline results directly reported
from the original papers if the protocol is the same. Our
proposed STAFF outperforms all comparison methods on
all tasks. Note that GentoAdapt, UNIT and SBADA-GAN
rely on pixel-level image generation, which is specifically de-
signed for digits and unrealistic to real-world adaptation tasks.
These approaches achieve quite competitive results when the
domain shift is small, while degrades a lot when the domain
discrepancy is large. This may be because image-translation
across domains with large discrepancy is challenging, let
alone learning good domain-invariant features from these
images. The approaches based on matching latent feature
distribution performs fairly stable.

10571



The four methods listed in the last four rows, all con-
sider exploiting multi-level feature representation in reducing
domain discrepancy. Deep-JDOT uses multiple loss at low
and global- representation directly to minimize the domain
discrepancy explicitly. CDAN integrates global feature and
classifier prediction by performing either a tensor-product in
Kernel space or approximately calculate cross-co-variance.
Our proposed STAFF consistently outperforms them in all
four adaptation tasks. We hypothesize the out-performance is
because we are the first to make the domain invariant feature
not only describes the holistic representation but also pre-
serves both fine-grained local structure and mode structure
simultaneously. Moreover, maximizing the mutual informa-
tion among multi-level representation is an effective way to
integrate features. A more detailed ablation study about the
contribution of global and local MI can be found in Section
Analysis.

Office-31 dataset: The results on Office-31 dataset of six
transfer tasks are reported in Table 2, with results of base-
lines directly reported from the original papers. The proposed
approach outperforms all comparison methods on all tasks.
Compared with digit dataset, these tasks are more difficult
as more dissimilar across domains and with much lower
adaptation accuracy. It is desirable that STAFF yield larger
boosts on such a difficult task, which reveals the importance
of structure-aware feature fusion. Among comparison ap-
proaches, CAN(Zhang et al. 2018), JAN(Long et al. 2016),
CDAN and our proposed approach all consider exploiting
multi-level presentation and we all boost performance. Our
STAFF achieves the best performance, which demonstrates
that maximizing mutual information among multi-level rep-
resentation is an effective way to integrate the information of
data local spatial structure and mode structure and make them
contribute to reducing the domain discrepancy. Rather than
using multiple domain discriminators at a different position
for distribution matching as done in CAN, our formulation is
more elegant and requires only one single domain discrimi-
nator in a simple form.

Office-Home dataset: The results on Office-Home dataset
of 12 transfer tasks are reported in Table 3. The proposed
approach outperforms all baseline methods in 10 out of 12
transfer tasks by a large margin except the most recent Sym-
Nets (Zhang et al. 2019). The potential reason is: Office-
Home dataset consists of much more class categories and
we may expect more difficult multi-modal class prediction
distribution to match on the target domain (the mode struc-
ture is more important). Maximizing the mutual information
between the global feature and classifier prediction is an ef-
fective way to integrate feature. Compared with the SymNets
results, STAFF still outperforms it and most of the sub-task
results are highly competitive. The experimental results of
STAFF also dedicate that combining the local and global
MI losses can significantly alleviate the problem of domain
discrepancies.

Analysis
We first compare our method with various sub-models (se-
lected functional modules of STAFF) to study the effective-
ness of each part. We then compare our proposed Mutual

Table 2: Recognition rates (%) of adapting Office-31 dataset.
Methods A-W W-A A-D D-A W-D D-W Avg
SO 73.5 59.8 76.5 56.7 99.0 93.6 76.5
DAN 80.5 62.8 78.6 63.6 99.6 97.1 80.4
RTN 84.5 64.8 77.5 66.2 99.4 96.8 81.6
DANN 82.0 67.4 79.7 68.2 99.1 96.9 82.2
JAN 86.0 70.7 85.1 69.2 99.7 96.7 84.6
CAN 81.5 63.4 85.5 65.9 99.7 98.2 82.4
CDAN 93.5 67.8 86.4 66.9 99.8 98.5 84.5
CDAN-E 94.1 69.3 92.9 71.0 100 98.6 87.7
SymNets 90.8 72.5 93.9 74.6 100 98.8 88.4
STAFF 96.4 70.2 94.0 71.7 99.8 99.6 88.6

information based feature integration with some other fea-
ture integration method, we not only report the recognition
accuracy and A-distance but also show T-SNE plot of their
feature embedding. We also compare the performance with
three alternative loss proposed in the Method Section for
maximizing the mutual information, including JSD, NCE
and MINE. Finally, we visualize how the local MI discrimi-
nator exploits local spatial structure information. We plot the
output of local MI discriminator ML by calculating the dot
product between the feature at each location of the local fea-
ture map with the global feature representation. All ablation
studies in this section are performed using the task: A→ W
in the office-31 dataset.

Contribution of Network Components

We conduct a detailed ablation study by examining the effec-
tiveness of each proposed component in our network struc-
ture. As shown in Table 4, introducing different combinations
of modules all boost the performance compared to two Base
Adaptation models, using DANN and MMD respectively.
Adding either global MI maximization loss MI(g, h) or local
MI maximization loss MI(g, l) improves the performance
by approximately over 8%, which verifies the effectiveness
of leveraging the mutual information constraints to integrate
multi-level features for both base divergence measurements.
Also, it is observed that the global MI maximization loss con-
tributes to the most performance gain as an individual module.
It indicates that integrates valuable information from classi-
fier prediction is very important to make the domain-invariant
feature maintains discriminative capability and thus leading
a better performance. By exploiting local spatial structure
and mode structure simultaneously, our proposed STAFF
achieves the best performance.

Comparison of Feature Integration Approach

In this section, we compare different feature integration ap-
proaches in unsupervised domain adaptation problem. We
integrate both the local spatial structure and classifier predic-
tion into the global representation in four ways. As shown
in Table.5, the conventional feature concatenation (i.e., con-
catenation of l , g and h), concatenation after projecting l ,
g and h to the same dimension and our proposed MI-based
integration boost the recognition performance compared to
the Base adaptation model and the one using multiple dis-
criminator networks (Multi-Adv). Our MI-based integration
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Table 3: Recognition rates (%) of adapting Office-Home dataset.
Methods A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg
Source Only 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DAN 43.6 50.7 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
DANN 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
JAN 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
CDAN+E 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
SymNet 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6
STAFF (Ours) 53.3 71.9 80.2 63.1 69.8 74.1 65.3 50.9 77.8 73.1 56.6 82.4 68.2

Table 4: Ablation study of different network components.
Global MI (GMI) and Local MI(LMI) indicate two MI losses.

Model LC LD GMI LMI Acc.
Source Only � × × × 72.3

Base Adaptation(DANN) � � × × 82.0
Base Adaptation(MMD) � � × × 80.5

Only GMI(DANN) � � � × 94.2
Only GMI(MMD) � � � × 88.0
Only LMI(DANN) � � × � 92.2
Only LMI(MMD) � � × � 88.3

STAFF(MMD)(Ours) � � � � 90.2
STAFF(DANN)(Ours) � � � � 96.4

Table 5: Comparison of feature integration approaches.
Base Multi Concat Concat STAFF

Adaptation Adv +Proj (Ours)
Acc 82.0 83.5 87.9 89.1 96.4

A-dist 1.648 1.573 1.458 1.451 1.313

Table 6: Comparison of Different Mutual Information loss.
MI loss JSD NCE MINE

Accuracy 96.4 91.0 93.7

outperforms both feature concatenation methods by around
8.5%, which implies that MI-based integration is more effec-
tive to incorporate structure information.

Besides the recognition performance, we also measure the
distribution discrepancy quantitatively through A-distance
(Ben-David et al. 2010). The A-distance is calculated fol-
lowing: d = 2(1− 2θ), where θ is the domain classification
generalization error using the Support Vector Machine (SVM)
classifier trained to discriminate the source from the target.
Table.5 presents the A-distance achieved by the base adapta-
tion and two feature integration models. It can be observed
that using our STAFF (MI-based integration) achieves the
lowest A distance, which proves its superior performance
of reducing the distribution gap more effectively. Finally, to
measure the feature discriminative capability, we plotted the
T-SNE (Maaten and Hinton 2008) result to visualize the 2-D
embedding of the extracted features for different feature inte-
gration approaches. Figure.4(a) -(c) plot the representation
of target domain images by base adaptation, feature concate-
nation and MI-based feature integration. Using MI-based
feature integration are evidently clustered closer than other

��� ��� ���

Figure 4: Visualization of TSNE plot of target image features;
(a) Base Adaptation (b) Feature Concatenation (c) STAFF,
MI-based Feature Integration.

Figure 5: Visualization of MI map between local features at
each spatial location and the global feature.

comparison methods. This shows the benefit of STAFF on
discriminative predictions.

Comparison of MI Optimization Loss

We compare three objective functions to maximize the MI
to integrate local and mode structures, including Jenson-
Shannon Divergence (JSD), Noise Contrastive Estimation
(NCE) and Mutual Information Neural Estimates (MINE).
The performance is reported in Table.6. These numbers are
all based on the same network architecture and training strat-
egy with batch size 32. It can be seen that using JSD achieves
the best performance. Another interesting observation is that
with increasing batch size, the performance of the NCE loss
improves a lot, which is consistent with the observation in
(Oord, Li, and Vinyals 2018). It can achieve similar perfor-
mance to JSD, i.e., 96.3 when the batch size is 256. For a fair
comparison with others, we fixed the batch size as 32 for all
comparison methods throughout the paper unless specified.

Visualize the output of local MI discriminator

We visualize the output of local MI discriminator, represent-
ing which spatial location has larger MI with the global fea-
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ture. As shown in Figure 5, different regions in images have
different corresponding MI value. The hotter the color, the
larger the MI value. Taking the first image as an example, the
calculator is highlighted with red color while the background
diminishes in blue color. These results intuitively reveal that
the positions with larger MI in local feature map closely link
to the discriminative area (i.e., foreground object). This en-
ables a fine-grained feature alignment, thus leading to a better
performance.

Conclusion

In this paper, we proposed the Structure-Aware Feature Fu-
sion (STAFF) module to integrate multi-level structure infor-
mation into a single global feature for UDA tasks. Through
maximizing the MI among multi-level features, STAFF can
integrate the multi-mode structure of class predictions and
the geometric structure of the local features into the global
feature and then perform a single adversarial game to make
it domain invariant. In this way, the learned domain-invariant
feature not only describes the holistic representation of the
original image but also preserves the fine-grained spatial
structure and discriminative mode structure. Evaluation on
extensive datasets suggests that the integrated features can
characterize the multi-level domain discrepancies in a more
meaningful and comprehensive manner.
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